Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Magic-sized (CdSe)13 clusters (MSCs) represent a material class at the boundary between molecules and quantum dots that exhibit a pronounced and well separated excitonic fine structure. The characteristic photoluminescence is composed of exciton bandgap emission and a spectrally broad mid-gap emission related to surface defects. Here, we report on a thermally activated energy transfer from fine-structure split exciton states to surface states by using temperature dependent photoluminescence excitation spectroscopy. We demonstrate that the broad mid-gap emission can be suppressed by a targeted Mn-doping of the MSC leading to the characteristic orange luminescence of the 4T1 → 6A1 Mn2+ transition. The energy transfer to the Mn2+ states is found to be significantly different than the transfer to the surface defect states, as the activation of the dopant emission requires a spin-conserving charge carrier transfer that only dark excitons can provide.
Jakubek, Z. J.; deVries, J.; Lin, S. Q.; Ripmeester, J.; Yu, K. Exciton recombination and upconverted photoluminescence in colloidal CdSe quantum dots. J. Phys. Chem. C 2008, 112, 8153–8158.
Almeida, G.; Ubbink, R. F.; Stam, M.; du Fossé, I.; Houtepen, A. J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758.
Almeida, G.; van der Poll, L.; Evers, W. H.; Szoboszlai, E.; Vonk, S. J. W.; Rabouw, F. T.; Houtepen, A. J. Size-dependent optical properties of InP colloidal quantum dots. Nano Lett. 2023, 23, 8697–8703.
Chiba, T.; Kido, J. Lead halide perovskite quantum dots for light-emitting devices. J. Mater. Chem. C 2018, 6, 11868–11877.
Park, Y. S.; Roh, J.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 2021, 6, 382–401.
Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulović, V.; Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2, 247–250.
Liu, M. X.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E. H. Colloidal quantum dot electronics. Nat. Electron. 2021, 4, 548–558.
Shin, S. H.; Hwang, B.; Zhao, Z. J.; Jeon, S. H.; Jung, J.; Lee, J. H.; Ju, B. K.; Jeong, J. H. Transparent displays utilizing nanopatterned quantum dot films. Sci. Rep. 2018, 8, 2463.
Choi, M. K.; Yang, J.; Hyeon, T.; Kim, D. H. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron. 2018, 2, 10.
Jethi, L.; Mack, T. G.; Kambhampati, P. Extending semiconductor nanocrystals from the quantum dot regime to the molecular cluster regime. J. Phys. Chem. C 2017, 121, 26102–26107.
Lifshitz, E.; Dag, I.; Litvin, I.; Hodes, G.; Gorer, S.; Reisfeld, R.; Zelner, M.; Minti, H. Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods. Chem. Phys. Lett. 1998, 288, 188–196.
Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. J. Phys. Chem. B 2001, 105, 436–443.
Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 2005, 127, 15378–15379.
Viswanatha, R.; Brovelli, S.; Pandey, A.; Crooker, S. A.; Klimov, V. I. Copper-doped inverted core/shell nanocrystals with “permanent” optically active holes. Nano Lett. 2011, 11, 4753–4758.
Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.
Riesner, M.; Shabani, F.; Zeylmans van Emmichoven, L.; Klein, J.; Delikanli, S.; Fainblat, R.; Demir, H. V.; Bacher, G. Demystifying trion emission in CdSe nanoplatelets. ACS Nano 2024, 18, 24523–24531.
Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761–6770.
Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y. et al. Route to the smallest doped semiconductor: Mn2+-doped (CdSe)13 clusters. J. Am. Chem. Soc. 2015, 137, 12776–12779.
Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.
Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.
Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.
Das Adhikari, S.; Dutta, A.; Dutta, S. K.; Pradhan, N. Layered perovskites L2(Pb1– x Mn x )Cl4 to Mn-doped CsPbCl3 perovskite platelets. ACS Energy Lett. 2018, 3, 1247–1253.
Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.
Zheng, J. J.; Cao, S.; Wang, L.; Gao, F. M.; Wei, G. D.; Yang, W. Y. Temperature-dependent photoluminescence properties of Mn: ZnCdS quantum dots. RSC Adv. 2014, 4, 30948–30952.
Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 2532–2540.
Beaulac, R.; Archer, P. I.; Liu, X. Y.; Lee, S.; Salley, G. M.; Dobrowolska, M.; Furdyna, J. K.; Gamelin, D. R. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 2008, 8, 1197–1201.
Baek, W.; Bootharaju, M. S.; Walsh, K. M.; Lee, S.; Gamelin, D. R.; Hyeon, T. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nat. Mater. 2021, 20, 650–657.
McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283–1292.
Erickson, C. S.; Bradshaw, L. R.; McDowall, S.; Gilbertson, J. D.; Gamelin, D. R.; Patrick, D. L. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 2014, 8, 3461–3467.
Sun, Q.; Wang, S. P.; Zhao, C. Y.; Leng, J.; Tian, W. M.; Jin, S. Y. excitation-dependent emission color tuning from an individual Mn-doped perovskite microcrystal. J. Am. Chem. Soc. 2019, 141, 20089–20096.
Vlaskin, V. A.; Janssen, N.; Van Rijssel, J.; Beaulac, R.; Gamelin, D. R. Tunable dual emission in doped semiconductor nanocrystals. Nano Lett. 2010, 10, 3670–3674.
Beaulac, R.; Archer, P. I.; Ochsenbein, S. T.; Gamelin, D. R. Mn2+-doped CdSe quantum dots: New inorganic materials for spin-electronics and spin-photonics. Adv. Funct. Mater. 2008, 18, 3873–3891.
Chernenko, A. V.; Brichkin, A. S.; Sobolev, N. A.; Carmo, M. C. Mechanisms of manganese-assisted non-radiative recombination in Cd(Mn)Se/Zn(Mn)Se quantum dots. J. Phys. Condens. Matter 2010, 22, 355306.
Peng, B.; Liang, W.; White, M. A.; Gamelin, D. R.; Li, X. S. Theoretical evaluation of spin-dependent auger de-excitation in Mn2+-doped semiconductor nanocrystals. J. Phys. Chem. C 2012, 116, 11223–11231.
Muckel, F.; Lorenz, S.; Yang, J.; Nugraha, T. A.; Scalise, E.; Hyeon, T.; Wippermann, S.; Bacher, G. Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters. Nat. Commun. 2020, 11, 4127.
Muckel, F.; Yang, J.; Lorenz, S.; Baek, W.; Chang, H.; Hyeon, T.; Bacher, G.; Fainblat, R. Digital doping in magic-sized CdSe clusters. ACS Nano 2016, 10, 7135–7141.
Bieniek, J.; Baek, W.; Hyeon, T.; Bacher, G.; Fainblat, R. Spectral fingerprints of individual Mn2+ impurities and Mn2+ pairs in magic-sized nanoclusters. J. Chem. Phys. 2023, 158, 224308.
Sapra, S.; Mayilo, S.; Klar, T. A.; Rogach, A. L.; Feldmann, J. Bright white-light emission from semiconductor nanocrystals: By chance and by design. Adv. Mater. 2007, 19, 569–572.
Banerjee, S.; Maddala, B. G.; Ali, F.; Datta, A. Enhancement of the band edge emission of CdSe nano-tetrapods by suppression of surface trapping. Phys. Chem. Chem. Phys. 2019, 21, 9512–9519.
Baker, D. R.; Kamat, P. V. Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir 2010, 26, 11272–11276.
Hässelbarth, A.; Eychmüller, A.; Weller, H. Detection of shallow electron traps in quantum sized CdS by fluorescence quenching experiments. Chem. Phys. Lett. 1993, 203, 271–276.
Hill, N. A.; Whaley, K. B. A theoretical study of the influence of the surface on the electronic structure of CdSe nanoclusters. J. Chem. Phys. 1994, 100, 2831–2837.
Kushwaha, M.; Srivastava, A. P.; Singh, M. K. Balanced emission from band-edge and trap states of ultra stable CdSe nanocrystals synthesized by aqueous route. Mater. Lett. 2013, 109, 23–26.
Hoheisel, W.; Colvin, V. L.; Johnson, C. S.; Alivisatos, A. P. Threshold for quasicontinuum absorption and reduced luminescence efficiency in CdSe nanocrystals. J. Chem. Phys. 1994, 101, 8455–8460.
Yang, J.; Muckel, F.; Choi, B. K.; Lorenz, S.; Kim, I. Y.; Ackermann, J.; Chang, H.; Czerney, T.; Kale, V. S.; Hwang, S. J. et al. Co2+-doping of magic-sized CdSe clusters: Structural insights via ligand field transitions. Nano Lett. 2018, 18, 7350–7357.
Del Ben, M.; Havenith, R. W. A.; Broer, R.; Stener, M. Density functional study on the morphology and photoabsorption of CdSe nanoclusters. J. Phys. Chem. C 2011, 115, 16782–16796.
Cui, Y. Q.; Lou, Z. Y.; Wang, X. Q.; Yu, S. P.; Yang, M. L. A study of optical absorption of cysteine-capped CdSe nanoclusters using first-principles calculations. Phys. Chem. Chem. Phys. 2015, 17, 9222–9230.
Azpiroz, J. M.; Matxain, J. M.; Infante, I.; Lopez, X.; Ugalde, J. M. A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys. Chem. Chem. Phys. 2013, 15, 10996–11005.
Nguyen, K. A.; Day, P. N.; Pachter, R. Understanding structural and optical properties of nanoscale CdSe magic-size quantum dots: Insight from computational prediction. J. Phys. Chem. C 2010, 114, 16197–16209.
Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843–4856.
Wang, H. Y.; de Mello Donegá, C.; Meijerink, A.; Glasbeek, M. Ultrafast exciton dynamics in CdSe quantum dots studied from bleaching recovery and fluorescence transients. J. Phys. Chem. B 2006, 110, 733–737.
Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. L.; Rosen, M. Observation of the “Dark Exciton” in CdSe quantum dots. Phys. Rev. Lett. 1995, 75, 3728–3731.
Norris, D. J.; Efros, A. L.; Rosen, M.; Bawendi, M. G. Size dependence of exciton fine structure in CdSe quantum Dots. Phys. Rev. B 1996, 53, 16347–16354.
Jones, M.; Nedeljkovic, J.; Ellingson, R. J.; Nozik, A. J.; Rumbles, G. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B 2003, 107, 11346–11352.
de Mello Donegá, C.; Bode, M.; Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 2006, 74, 085320.
Leung, K.; Pokrant, S.; Whaley, K. B. Exciton fine structure in CdSe nanoclusters. Phys. Rev. B 1998, 57, 12291–12301.
Mooney, J.; Krause, M. M.; Saari, J. I.; Kambhampati, P. A microscopic picture of surface charge trapping in semiconductor nanocrystals. J. Chem. Phys. 2013, 138, 204705.
Mooney, J.; Krause, M. M.; Saari, J. I.; Kambhampati, P. Challenge to the deep-trap model of the surface in semiconductor nanocrystals. Phys. Rev. B 2013, 87, 081201.
Livache, C.; Kim, W. D.; Jin, H.; Kozlov, O. V.; Fedin, I.; Klimov, V. I. High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange auger ionization. Nat. Photonics 2022, 16, 433–440.
Nawrocki, M.; Rubo, Y. G.; Lascaray, J. P.; Coquillat, D. Suppression of the auger recombination due to spin polarization of excess carriers and Mn2+ ions in the semimagnetic semiconductor Cd0.95Mn0.05S. Phys. Rev. B 1995, 52, R2241–R2244.
Viswanatha, R.; Pietryga, J. M.; Klimov, V. I.; Crooker, S. A. Spin-polarized Mn2+ emission from mn-doped colloidal nanocrystals. Phys. Rev. Lett. 2011, 107, 067402.
Chernenko, A.; Dorozhkin, P.; Kulakovskii, V.; Brichkin, A.; Ivanov, S.; Toropov, A. Auger recombination of excitons in semimagnetic quantum dot structure in a magnetic field. Phys. Rev. B 2005, 72, 045302.
Vink, A. P.; de Bruin, M. A.; Roke, S.; Peijzel, P. S.; Meijerink, A. Luminescence of exchange coupled pairs of transition metal ions. J. Electrochem. Soc. 2001, 148, E313.
Bradshaw, L. R.; May, J. W.; Dempsey, J. L.; Li, X.; Gamelin, D. R. Ferromagnetic excited-state Mn2+ dimers in Zn1– x Mn x Se quantum dots observed by time-resolved magnetophotoluminescence. Phys. Rev. B 2014, 89, 115312.
116
Views
19
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
Copyright: © 2024 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.