AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Impact of exciton fine structure on the energy transfer in magic-sized (CdSe)13 clusters

Jan Bieniek1Woonhyuk Baek2,3,4Severin Lorenz1Franziska Muckel1,5Rachel Fainblat1Taeghwan Hyeon2,3Gerd Bacher1( )
Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, Bismarckstr. 81, Duisburg 47057, Germany
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea
Department of Semiconductor Science & Technology, Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea
Electroenergetic Functional Materials (EEFM) & CENIDE, University Duisburg-Essen, Duisburg 47057, Germany
Show Author Information

Graphical Abstract

Due to the sub-nanometer size and the resulting strong quantum confinement, magic-sized (CdSe)13 clusters exhibit a pronounced and well separated excitonic fine structure. The occurrence of deep trap emission and the ability of efficient Mn2+ doping enables the experimental investigation of the energy transfer from excited excitonic fine structure states to emitting states arising from surface traps (ST) or Mn2+ dopants.

Abstract

Magic-sized (CdSe)13 clusters (MSCs) represent a material class at the boundary between molecules and quantum dots that exhibit a pronounced and well separated excitonic fine structure. The characteristic photoluminescence is composed of exciton bandgap emission and a spectrally broad mid-gap emission related to surface defects. Here, we report on a thermally activated energy transfer from fine-structure split exciton states to surface states by using temperature dependent photoluminescence excitation spectroscopy. We demonstrate that the broad mid-gap emission can be suppressed by a targeted Mn-doping of the MSC leading to the characteristic orange luminescence of the 4T16A1 Mn2+ transition. The energy transfer to the Mn2+ states is found to be significantly different than the transfer to the surface defect states, as the activation of the dopant emission requires a spin-conserving charge carrier transfer that only dark excitons can provide.

Electronic Supplementary Material

Download File(s)
7108_ESM.pdf (443.4 KB)

References

[1]

Jakubek, Z. J.; deVries, J.; Lin, S. Q.; Ripmeester, J.; Yu, K. Exciton recombination and upconverted photoluminescence in colloidal CdSe quantum dots. J. Phys. Chem. C 2008, 112, 8153–8158.

[2]

Almeida, G.; Ubbink, R. F.; Stam, M.; du Fossé, I.; Houtepen, A. J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758.

[3]

Almeida, G.; van der Poll, L.; Evers, W. H.; Szoboszlai, E.; Vonk, S. J. W.; Rabouw, F. T.; Houtepen, A. J. Size-dependent optical properties of InP colloidal quantum dots. Nano Lett. 2023, 23, 8697–8703.

[4]

Chiba, T.; Kido, J. Lead halide perovskite quantum dots for light-emitting devices. J. Mater. Chem. C 2018, 6, 11868–11877.

[5]

Park, Y. S.; Roh, J.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 2021, 6, 382–401.

[6]

Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulović, V.; Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2, 247–250.

[7]

Liu, M. X.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E. H. Colloidal quantum dot electronics. Nat. Electron. 2021, 4, 548–558.

[8]

Shin, S. H.; Hwang, B.; Zhao, Z. J.; Jeon, S. H.; Jung, J.; Lee, J. H.; Ju, B. K.; Jeong, J. H. Transparent displays utilizing nanopatterned quantum dot films. Sci. Rep. 2018, 8, 2463.

[9]

Choi, M. K.; Yang, J.; Hyeon, T.; Kim, D. H. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron. 2018, 2, 10.

[10]

Jethi, L.; Mack, T. G.; Kambhampati, P. Extending semiconductor nanocrystals from the quantum dot regime to the molecular cluster regime. J. Phys. Chem. C 2017, 121, 26102–26107.

[11]

Lifshitz, E.; Dag, I.; Litvin, I.; Hodes, G.; Gorer, S.; Reisfeld, R.; Zelner, M.; Minti, H. Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods. Chem. Phys. Lett. 1998, 288, 188–196.

[12]

Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. J. Phys. Chem. B 2001, 105, 436–443.

[13]

Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 2005, 127, 15378–15379.

[14]

Viswanatha, R.; Brovelli, S.; Pandey, A.; Crooker, S. A.; Klimov, V. I. Copper-doped inverted core/shell nanocrystals with “permanent” optically active holes. Nano Lett. 2011, 11, 4753–4758.

[15]

Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.

[16]

Riesner, M.; Shabani, F.; Zeylmans van Emmichoven, L.; Klein, J.; Delikanli, S.; Fainblat, R.; Demir, H. V.; Bacher, G. Demystifying trion emission in CdSe nanoplatelets. ACS Nano 2024, 18, 24523–24531.

[17]

Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761–6770.

[18]

Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y. et al. Route to the smallest doped semiconductor: Mn2+-doped (CdSe)13 clusters. J. Am. Chem. Soc. 2015, 137, 12776–12779.

[19]

Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.

[20]

Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

[21]

Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.

[22]

Das Adhikari, S.; Dutta, A.; Dutta, S. K.; Pradhan, N. Layered perovskites L2(Pb1– x Mn x )Cl4 to Mn-doped CsPbCl3 perovskite platelets. ACS Energy Lett. 2018, 3, 1247–1253.

[23]

Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.

[24]

Zheng, J. J.; Cao, S.; Wang, L.; Gao, F. M.; Wei, G. D.; Yang, W. Y. Temperature-dependent photoluminescence properties of Mn: ZnCdS quantum dots. RSC Adv. 2014, 4, 30948–30952.

[25]

Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 2532–2540.

[26]

Beaulac, R.; Archer, P. I.; Liu, X. Y.; Lee, S.; Salley, G. M.; Dobrowolska, M.; Furdyna, J. K.; Gamelin, D. R. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 2008, 8, 1197–1201.

[27]

Baek, W.; Bootharaju, M. S.; Walsh, K. M.; Lee, S.; Gamelin, D. R.; Hyeon, T. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nat. Mater. 2021, 20, 650–657.

[28]

McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283–1292.

[29]

Erickson, C. S.; Bradshaw, L. R.; McDowall, S.; Gilbertson, J. D.; Gamelin, D. R.; Patrick, D. L. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 2014, 8, 3461–3467.

[30]

Sun, Q.; Wang, S. P.; Zhao, C. Y.; Leng, J.; Tian, W. M.; Jin, S. Y. excitation-dependent emission color tuning from an individual Mn-doped perovskite microcrystal. J. Am. Chem. Soc. 2019, 141, 20089–20096.

[31]

Vlaskin, V. A.; Janssen, N.; Van Rijssel, J.; Beaulac, R.; Gamelin, D. R. Tunable dual emission in doped semiconductor nanocrystals. Nano Lett. 2010, 10, 3670–3674.

[32]

Beaulac, R.; Archer, P. I.; Ochsenbein, S. T.; Gamelin, D. R. Mn2+-doped CdSe quantum dots: New inorganic materials for spin-electronics and spin-photonics. Adv. Funct. Mater. 2008, 18, 3873–3891.

[33]

Chernenko, A. V.; Brichkin, A. S.; Sobolev, N. A.; Carmo, M. C. Mechanisms of manganese-assisted non-radiative recombination in Cd(Mn)Se/Zn(Mn)Se quantum dots. J. Phys. Condens. Matter 2010, 22, 355306.

[34]

Peng, B.; Liang, W.; White, M. A.; Gamelin, D. R.; Li, X. S. Theoretical evaluation of spin-dependent auger de-excitation in Mn2+-doped semiconductor nanocrystals. J. Phys. Chem. C 2012, 116, 11223–11231.

[35]

Muckel, F.; Lorenz, S.; Yang, J.; Nugraha, T. A.; Scalise, E.; Hyeon, T.; Wippermann, S.; Bacher, G. Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters. Nat. Commun. 2020, 11, 4127.

[36]

Muckel, F.; Yang, J.; Lorenz, S.; Baek, W.; Chang, H.; Hyeon, T.; Bacher, G.; Fainblat, R. Digital doping in magic-sized CdSe clusters. ACS Nano 2016, 10, 7135–7141.

[37]

Bieniek, J.; Baek, W.; Hyeon, T.; Bacher, G.; Fainblat, R. Spectral fingerprints of individual Mn2+ impurities and Mn2+ pairs in magic-sized nanoclusters. J. Chem. Phys. 2023, 158, 224308.

[38]

Sapra, S.; Mayilo, S.; Klar, T. A.; Rogach, A. L.; Feldmann, J. Bright white-light emission from semiconductor nanocrystals: By chance and by design. Adv. Mater. 2007, 19, 569–572.

[39]

Banerjee, S.; Maddala, B. G.; Ali, F.; Datta, A. Enhancement of the band edge emission of CdSe nano-tetrapods by suppression of surface trapping. Phys. Chem. Chem. Phys. 2019, 21, 9512–9519.

[40]

Baker, D. R.; Kamat, P. V. Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir 2010, 26, 11272–11276.

[41]

Hässelbarth, A.; Eychmüller, A.; Weller, H. Detection of shallow electron traps in quantum sized CdS by fluorescence quenching experiments. Chem. Phys. Lett. 1993, 203, 271–276.

[42]

Hill, N. A.; Whaley, K. B. A theoretical study of the influence of the surface on the electronic structure of CdSe nanoclusters. J. Chem. Phys. 1994, 100, 2831–2837.

[43]

Kushwaha, M.; Srivastava, A. P.; Singh, M. K. Balanced emission from band-edge and trap states of ultra stable CdSe nanocrystals synthesized by aqueous route. Mater. Lett. 2013, 109, 23–26.

[44]

Hoheisel, W.; Colvin, V. L.; Johnson, C. S.; Alivisatos, A. P. Threshold for quasicontinuum absorption and reduced luminescence efficiency in CdSe nanocrystals. J. Chem. Phys. 1994, 101, 8455–8460.

[45]

Yang, J.; Muckel, F.; Choi, B. K.; Lorenz, S.; Kim, I. Y.; Ackermann, J.; Chang, H.; Czerney, T.; Kale, V. S.; Hwang, S. J. et al. Co2+-doping of magic-sized CdSe clusters: Structural insights via ligand field transitions. Nano Lett. 2018, 18, 7350–7357.

[46]

Del Ben, M.; Havenith, R. W. A.; Broer, R.; Stener, M. Density functional study on the morphology and photoabsorption of CdSe nanoclusters. J. Phys. Chem. C 2011, 115, 16782–16796.

[47]

Cui, Y. Q.; Lou, Z. Y.; Wang, X. Q.; Yu, S. P.; Yang, M. L. A study of optical absorption of cysteine-capped CdSe nanoclusters using first-principles calculations. Phys. Chem. Chem. Phys. 2015, 17, 9222–9230.

[48]

Azpiroz, J. M.; Matxain, J. M.; Infante, I.; Lopez, X.; Ugalde, J. M. A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys. Chem. Chem. Phys. 2013, 15, 10996–11005.

[49]

Nguyen, K. A.; Day, P. N.; Pachter, R. Understanding structural and optical properties of nanoscale CdSe magic-size quantum dots: Insight from computational prediction. J. Phys. Chem. C 2010, 114, 16197–16209.

[50]

Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843–4856.

[51]

Wang, H. Y.; de Mello Donegá, C.; Meijerink, A.; Glasbeek, M. Ultrafast exciton dynamics in CdSe quantum dots studied from bleaching recovery and fluorescence transients. J. Phys. Chem. B 2006, 110, 733–737.

[52]

Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. L.; Rosen, M. Observation of the “Dark Exciton” in CdSe quantum dots. Phys. Rev. Lett. 1995, 75, 3728–3731.

[53]

Norris, D. J.; Efros, A. L.; Rosen, M.; Bawendi, M. G. Size dependence of exciton fine structure in CdSe quantum Dots. Phys. Rev. B 1996, 53, 16347–16354.

[54]

Jones, M.; Nedeljkovic, J.; Ellingson, R. J.; Nozik, A. J.; Rumbles, G. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B 2003, 107, 11346–11352.

[55]

de Mello Donegá, C.; Bode, M.; Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 2006, 74, 085320.

[56]

Leung, K.; Pokrant, S.; Whaley, K. B. Exciton fine structure in CdSe nanoclusters. Phys. Rev. B 1998, 57, 12291–12301.

[57]

Mooney, J.; Krause, M. M.; Saari, J. I.; Kambhampati, P. A microscopic picture of surface charge trapping in semiconductor nanocrystals. J. Chem. Phys. 2013, 138, 204705.

[58]

Mooney, J.; Krause, M. M.; Saari, J. I.; Kambhampati, P. Challenge to the deep-trap model of the surface in semiconductor nanocrystals. Phys. Rev. B 2013, 87, 081201.

[59]

Livache, C.; Kim, W. D.; Jin, H.; Kozlov, O. V.; Fedin, I.; Klimov, V. I. High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange auger ionization. Nat. Photonics 2022, 16, 433–440.

[60]

Nawrocki, M.; Rubo, Y. G.; Lascaray, J. P.; Coquillat, D. Suppression of the auger recombination due to spin polarization of excess carriers and Mn2+ ions in the semimagnetic semiconductor Cd0.95Mn0.05S. Phys. Rev. B 1995, 52, R2241–R2244.

[61]

Viswanatha, R.; Pietryga, J. M.; Klimov, V. I.; Crooker, S. A. Spin-polarized Mn2+ emission from mn-doped colloidal nanocrystals. Phys. Rev. Lett. 2011, 107, 067402.

[62]

Chernenko, A.; Dorozhkin, P.; Kulakovskii, V.; Brichkin, A.; Ivanov, S.; Toropov, A. Auger recombination of excitons in semimagnetic quantum dot structure in a magnetic field. Phys. Rev. B 2005, 72, 045302.

[63]

Vink, A. P.; de Bruin, M. A.; Roke, S.; Peijzel, P. S.; Meijerink, A. Luminescence of exchange coupled pairs of transition metal ions. J. Electrochem. Soc. 2001, 148, E313.

[64]

Bradshaw, L. R.; May, J. W.; Dempsey, J. L.; Li, X.; Gamelin, D. R. Ferromagnetic excited-state Mn2+ dimers in Zn1– x Mn x Se quantum dots observed by time-resolved magnetophotoluminescence. Phys. Rev. B 2014, 89, 115312.

Nano Research
Cite this article:
Bieniek J, Baek W, Lorenz S, et al. Impact of exciton fine structure on the energy transfer in magic-sized (CdSe)13 clusters. Nano Research, 2024, https://doi.org/10.1007/s12274-024-7108-1
Topics:

116

Views

19

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 October 2024
Revised: 08 November 2024
Accepted: 12 November 2024
Published: 23 November 2024
© The Author(s) 2024

Copyright: © 2024 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return