We present a comparison of different techniques for the analysis of the shift and tilt in optical interference fringes. Fringe center, Radon transform, and Gaussian approximation methods are used for fringe analysis. We have measured the tilt and shift between two relevant fringe patterns. The error in tilt measurement was about 2%, and the displacement of the order of few nanometers was measured by the fringe shift analysis. The comparison between the techniques is analyzed with respect to percentage error.
E. Hecht, Optics, 4th Edition, Boston: Addison-Wesley, 2002.
M. Buendia, R. Cibrian, R. Salvador, C. Roldan, and J. M. Inesta, “Automatic analysis of speckle photography fringes,” Applied Optics, 1997, 36(11): 2395–2400.
L. He, “Vibration-compensated interferometry system using phase-modulating interference fringe subdivision technology,” Applied Optics, 2006, 45(31): 7987–7992.
B. Hussain, M. Ahmed, G. Hussain, M. Saleem, and M. Nawaz, “Analog processing based vibration measurement technique using Michelson interferometer,” Photonic Sensors, 2013, 3(2): 137–143.
B. Hussain, T. Muhammad, M. Rehan, H. Aman, M. Aslam, M. Ikram, et al., “Fast processing of optical fringe movement in displacement sensors without using an ADC,” Photonic Sensors, 2013, 3(3): 241–245.
L. I. Gurvits, R. A. Preston, and H. Hirabayashi, “Space VLBI as a tool for studying the early universe: first results and prospects,” Astrophysics and Space Science, 1999, 269–270(0): 557–562.
B. Hussain, M. Ahmed, M. Nawaz, M. Saleem, M. Razzaq, M. A. Zia, et al., “Simultaneous determination of thickness and refractive index based on time-of-flight measurements of terahertz pulse,” Applied Optics, 2012, 51(21): 5326–5330.
B. Hussain, M. Nawaz, M. Ahmed, and M. Y. A. Raja, “Measurement of thickness and refractive index using femtosecond and terahertz pulses,” Laser Physics Letters, 2013, 10(5): 055301-1‒055301-6.
P. K. Rastogi, Digital speckle pattern interferometry and related techniques. New Jersey, U. S. A.: Wiley, 2001.
M. A. Morsy, T. Yatagai, A. Hamza, M. A. Mabrouk, and T. Z. N. Sokkar, “Multiple-beam fizeau fringe-pattern analysis using fourier transform method for accurate measurement of fiber refractive index profile of polymer fiber,” Applied Polymer Science, 2002, 85(3): 475–484.
E. Berger, W. V. D. Linden, V. Dose, M. W. Ruprecht, and A. W. Koch, “Approach for the evaluation of speckle deformation measurements by application of the wavelet transformation,” Applied Optics, 1997, 36(29): 7455–7460.
O. S. Cedeno, M. Rivera, and R. L. Saenz, “Fast phase recovery from a single closed-fringe pattern,” Journal of the Optical Society of America A, 2008, 25(6): 1361–1370.
X. Yu, Y. Yao, W. Shi, Y. Sun, and D. Chen, “Study on an automatic processing technique of the circle interference fringe for fine interferometry,” Optik-Internal Journal for Light and Electron Optics, 2010, 121(9): 826–830.
D. Zhang, M. Ma, and D. D. Arola, “Fringe skeletonizing using an improved derivative sign binary method,” Optics and Lasers in Engineering, 2002, 37(1): 51–62.
K. J. Khouzani and H. S. Zadeh, “Radon transform orientation estimation for rotation invariant texture analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 1004–1008.
C. L. L. Hendriks, M. V. Ginkel, P. W. Verbeek, and L. J. V. Vliet, “The generalized radon transform: Sampling, accuracy and memory considerations,” Pattern Recognition, 2005, 38(12): 2494–2505.
C. Tang, W. Lu, Y. Cai, L. Han, and G. Wang, “Nearly preprocessing-free method for skeletonization of gray-scale electronic speckle pattern interferometry fringe patterns via partial differential equations,” Optics Letters, 2008, 33(2): 183–185.
R. C. Gonzalez and R. E. Woods, Digital image processing. Upper Saddle River, U. S. A.: Prentice Hall, 2008.
M. A. Ahmadshahi, “Gray-level transformation to increase the density of interferometric fringes,” Applied Optics, 1991, 30(17): 2382–2385.
R. A. P. Herrera, M. F. Vallejo, and M. L. Amo, “Robust fiber-optic sensor networks,” Photonic Sensors, 2012, 2(4): 366–380.
O. Farazao, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. L. Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sensors, 2012, 2(2): 118–126.
B. Hussain, M. Ikram, and A. Mehmood, “A precise fast high voltage pulse measurement optical system using Kerr cell containing nitrobenzene as an optically active material,” International Journal of Computer and Electrical Engineering, 2013, 5(5): 460–463.
B. Hussain, M. Ahmed, M. Nawaz, and F. Gul, “Self-focusing in transformer oil with external electric field,” Laser Physics, 2012, 22(12): 1815–1818.
R. M. Andre, S. O. Silva, M. Becker, K. Schuster, M. Rothardt, H. Bartelt, et al., “Strain sensitivity enhancement in suspended core fiber tapers,” Photonic Sensors, 2013, 3(2): 118–123.