In this paper, a hexagonal shape photonic crystal fiber (H-PCF) has been proposed as a gas sensor of which both micro-structured core and cladding are organized by circular air cavities. The reported H-PCF has a single layer circular core which is surrounded by a five-layer hexagonal cladding. The overall pretending process of the H-PCF is completed by using a full vectorial finite element method (FEM) with perfectly matched layer (PML) boundary condition. All geometrical parameters like diameters and pitches of both core and cladding regions have fluctuated with an optimized structure. After completing the numerical analysis, it is clearly visualized that the proposed H-PCF exhibits high sensitivity with low confinement loss. The investigated results reveal the relative sensitivity of 56.65% and confinement loss of 2.31×10-5 dB/m at the 1.33-μm wavelength. Moreover, effective area, nonlinearity, and V-parameter of the suggested PCF are also briefly described.
H. J. Kim, O. Kown, S. B. Lee, and Y. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a d-shaped photonic crystal fiber,” Applied Physics B: Chemical, 2010, 102(1): 81–85.
F. Yu, Z. P. Wang, W. H. Yang, and C. Y. Lv, “Characteristics of highly birefringent photonic crystal fiber with defected core and equilateral pentagon architecture,” Advances in OptoElectronics, 2016, 2016(6): 1–8.
E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Optics Express, 2004, 12(5): 776.
S. L. Mousavi and M. Sabaeian, “Thermal stress-induced depolarization loss in conventional and panda-shaped photonic crystal fiber lasers,” Brazilian Journal of Physics, 2016, 46(5): 481–488.
S. H. Kim and G. R. Yi, “Colloidal photonic crystals for sensor applications,” Photonic Materials for Sensing, Biosensing and Display Devices, 2016, 229: 51–78.
H. P. Gong, M. L. Xiong, Z. H. Qian, C. L. Zhao, and X. Y. Dong, “Simultaneous measurement of curvature and temperature based on Mach-Zehnder interferometer comprising core-offset and sphericalshape structures,” IEEE Photonics Journal, 2016, 8(1): 1–9.
H. L. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Optics Express, 2012, 20(28): 29507–29517.
J. Han, S. Y. Li, and T. Zhang, “Design on a novel hybrid-core photonic crystal fiber with large birefringence and high nonlinearity,” Optical and Quantum Electronics, 2016, 48(371): 1–11.
B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. S. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis,” Sensing and Bio-Sensing Research, 2017, 12(1): 36–42.
W. C. Cai, E. Liu, B. Feng, H. F. Liu, Z. M. Wang, W. Xiao, et al., “Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes,” Optik– International Journal for Light and Electron Optics, 2016, 127(10): 4438–4442.
Z. L. Liu, J. An, J. W. Xing, and H. L. Du, “Polarization rotator based on liquid crystal infiltrated tellurite photonic crystal fiber,” Optik-International Journal for Light and Electron Optics, 2016, 127(10): 4391–4395.
A. Argyros, “Microstructures in polymer fibers for optical fibers, THz waveguides, and fiber-based metamaterials,” ISRN Optics, 2013, 2013(7): 1–22.
S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sensing and Bio-Sensing Research, 2016, 10: 20–26.
D. Q. Yang, W. Yuan, and Y. F. Ji, “Nanoparticle detection using fano-resonance photonic crystal on optical fiber-tip,” SPIE, 2016, 10158: 10158l1–10158l8.
S. Rota-Rodrigo, A. Lopez-Aldaba, R. A. Perez-Herrera, M. D. L. Bautista, O. Esteban, and M. Lopez-Amo, “Simultaneous measurement of humidity and vibration based on a microwire sensor system using fast Fourier transform technique,” Journal of Lightwave Technology, 2016, 34(19): 4525–4530.
J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S. P. Yu, D. E. Chang, et al., “Atom-atom interactions around the band edge of a photonic crystal waveguide,” Proceedings of the National Academy of Sciences, 2016, 113(38): 10507–10512.
X. H. Liu, M. S. Jiang, Q. M. Sui, S. Y. Luo, and X. Y. Geng, “Optical fiber Fabry-Perot interferometer for microorganism growth detection,” Optical Fiber Technology, 2016, 30: 32–37.
E. Brzozowska, M. Koba, M. Smietana, S. Gorska, M. Janik, A. Gamian, et al., “Label-free gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings,” Biomedical Optics Express, 2016, 7(3): 829.
Z. Yang, M. L. Liu, M. Shao, and Y. J. Ji, “Research on leakage detection and analysis of leakage point in the gas pipeline system,” Open Journal of Safety Science and Technology, 2011, 01(03): 94–100.
M. F. H. Arif, S. Asaduzzaman, M. J. H. Biddut, and K. Ahmed, “Design and optimization of highly sensitive photonic crystal fiber with low confinement loss for ethanol detection,” International Journal of Technology, 2016, 6: 1068–1076.
K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sensing and Bio-Sensing Research, 2016, 7(1): 1–6.
F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Applied Physics Letters, 2004, 85(12): 2181.
A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, Sabouri, G. A. Mahdiraji, et al., “Photonic crystal fiber based plasmonic sensors,” Sensors and Actuators B: Chemical, 2017, 243: 311–325.
R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Applied Physics Letters, 2016, 108(23): 231107.
S. H. Kassani, R. Khazaeinezhad, Y. Jung, J. Kobelke, and K. Oh, “Suspended ring-core photonic crystal fiber gas sensor with high sensitivity and fast response,” IEEE Photonics Journal, 2015, 7(1): 1–9.
S. J. Zheng, M. Ghandehari, and J. P. Ou, “Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser,” Sensors and Actuators B: Chemical, 2016, 223: 324–332.
C. M. B. Cordeiro, M. A. Franco, G. Chesini, E. C. Barretto, R. Lwin, C. B. Cruz, et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, 2006, 14(26): 13056.
Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Applied Optics, 2003, 42(18): 3509.
M. Morshed, M. I. Hasan, and S. M. A. Razzak, “Enhancement of the sensitivity of gas sensor based on microstructure optical fiber,” Photonic Sensors, 2015, 5(4): 312–320.
Z. G. Zhi, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Optics & Laser Technology, 2008, 40(1): 167–174.
S. Olyaee and A. Naraghi, ”Design and optimization of index-guiding photonic crystal fiber gas sensor,” Photonic Sensors, 2013, 3(2): 131–136.
S. Olyaee, A. Naraghi, and V. Ahmadi, “High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring,” Optik–International Journal for Light and Electron Optics, 2014, 125(1): 596–600.
S. Asaduzzaman, K. Ahmed, T. Bhuiyan, and M. F. H. Arif, “Design of simple structure gas sensor Based on hybrid photonic crystal fiber,” Cumhuriyet Science Journal, 2016, 37(3): 187–196.
X. Yu, Y. Zhang, Y. C. Kwok, and P. Shum, “Highly sensitive photonic crystal fiber based absorption spectroscopy,” Sensors and Actuators: B Chemical, 2010, 145(1): 110–113.
T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Measurement Science and Technology, 2001, 12(7): 854–858.
J. W. Wang, C. Jiang, W. S. Hu, and M. Y. Gao, “Properties of index-guided PCF with air-core,” Optics & Laser Technology, 2007, 39(2): 317–321.
N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Optics Letters, 2003, 28(20): 1879.
M. Morshed, M. F. H. Airf, S. Asaduzzaman, and K. Ahmed, “Design and characterization of photonic crystal fiber for sensing applications,” European Journal of Scientific Research, 2016, 11(12): 228–235.
S. Olyaee and F. Taghipour, “Doped-core octagonal Photonic crystal fiber with ultra-flattened nearly zero dispersion and low confinement loss in a wide wavelength range,” Fiber and Integrated Optics, 2012, 31(3): 178–185.
S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Optics Express, 2012, 20(2): 1385.
P. Ma, N. F. Song, J. Jin, J. M. Song, and X. B. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Optics & Laser Technology, 2012, 44(6): 1829–1833.
S. Sen, S. Chowdhury, K. Ahmed, and S. Asaduzzaman, “Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength,” Photonic Sensors, 2017, 7(1): 55–65.
S. Asaduzzaman, K. Ahmed, and B. K. Paul, “Slotted-core photonic crystal fiber in gas-sensing application,” SPIE, 2016, 10025: 100250O1–100250O9.
M. Napierala, T. Nasilowski, E. Beres-Pawlik, F. Berghmans, J. Wojcik, and H. Thienpont, “Extremely large-mode-area photonic crystal fiber with low bending loss,” Optics express, 2010, 18(15): 15408–15418.
J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Optical Fiber Technology, 1999, 5(3): 305–330.
M. N. Petrovich, A. Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, et al., “Microstructured fibers for sensing applications,” SPIE, 2005, 6005: 60050E1–60050E15.
H. H. El, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, et al., “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Optics Express, 2012, 20(28): 29751.
H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, et al., “Bismuth glass holey fibers with high nonlinearity,” Optics Express, 2004, 12(21): 5082.
K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, et al., “Extruded single-mode non-silica glass holey optical fibers,” Electronics Letters, 2002, 38(12): 546–547.