Phase-sensitive optical time domain reflectometry (Ф-OTDR) is an effective way to detect vibrations and acoustic waves with high sensitivity, by interrogating coherent Rayleigh backscattering light in sensing fiber. In particular, fiber-optic distributed acoustic sensing (DAS) based on the Ф-OTDR with phase demodulation has been extensively studied and widely used in intrusion detection, borehole seismic acquisition, structure health monitoring, etc., in recent years, with superior advantages such as long sensing range, fast response speed, wide sensing bandwidth, low operation cost and long service lifetime. Significant advances in research and development (R&D) of Ф-OTDR have been made since 2014. In this review, we present a historical review of Ф-OTDR and then summarize the recent progress of Ф-OTDR in the Fiber Optics Research Center (FORC) at University of Electronic Science and Technology of China (UESTC), which is the first group to carry out R&D of Ф-OTDR and invent ultra-sensitive DAS (uDAS) seismometer in China which is elected as one of the ten most significant technology advances of PetroChina in 2019. It can be seen that the Ф-OTDR/DAS technology is currently under its rapid development stage and would reach its climax in the next 5 years.
J. Park, W. Lee, and H. F. Taylor, “Fiber optic intrusion sensor with the configuration of an optical time-domain reflectometer using coherent interference of Rayleigh backscattering,” International Society for Optics and Photonics, China, 1998, 3555: 49–56.
C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Applied Optics, 1978, 17(18): 2867–2869.
R. Juskaitis, A. M. Mamedov, V. T. Potapov, and S. V. Shatalin, “Interferometry with Rayleigh backscattering in a single-mode optical fiber,” Optics Letters, 1994, 19(3): 225–227.
K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photonics Technology Letters, 2003, 15(3): 386–388.
J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” Journal of Lightwave Technology, 2005, 23(6): 2081–2087.
J. C. Juarez and H. F. Taylor, “Distributed fiber optic intrusion sensor system for monitoring long perimeters,” SPIE, 2005, 5778: 692–703.
J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Applied Optics, 2007, 46(11): 1968–1971.
K. L. Xie, Y. J. Rao, and Z. L. Ran, “Distributed optical fiber sensing system based of Rayleigh scattering light Ф-OTDR using single-mode fiber laser with high power and narrow linewidth,” Acta Optica Sinica, 2008, 28(3): 569–572.
J. Z. Li, Y. J. Rao, Z. L. Ran, et al., “Distributed optical fiber perturbation sensing system combined with Ф-OTDR and POTDR,” Acta Optica Sinica, 2009, 38(5): 1108–1113.
A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Measurement Science and Technology, 2013, 24(8): 085204.
Y. Shang, Y. Yang, C. Wang, X. Liu, C. Wang, and G. Peng, “Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering,” Measurement, 2016, 79: 222–227.
Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M Fan, et al., “Coherent Ф-OTDR based on I/Q demodulation and homodyne detection,” Optics Express, 2016, 24(2): 853–858.
S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Optics Express, 2015, 23(26): 33301–33309.
J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Optics Express, 2016, 24(12): 13121–13133.
J. Pastor-Graells, J. Nuno, M. R. Fernandez-Ruiz, A. Garcia-Ruiz, H. F. Martins, S. Martin-Lopez, et al., “Chirped-pulse phase-sensitive reflectometer assisted by first-order Raman amplification,” Journal of Lightwave Technology, 2017, 35(21): 4677–4683.
M. R. Fernández-Ruiz, L. Costa, and H. F. Martins, “Distributed acoustic sensing using chirped-pulse phase-sensitive OTDR technology,” Sensors, 2019, 19(20): 4368.
D. Chen, Q. Liu, and Z. He, “High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution,” Optics Express, 2018, 26(13): 16138–16146.
J. Xiong, Z. Wang, Y. Wu, H. Wu, and Y. Rao, “Long-distance distributed acoustic sensing utilizing negative frequency band,” Optics Express, 2020, 28(24): 35844–35856.
P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, et al., “Dynamic strain determination using fiber-optic cables allows imaging of seismological and structural features,” Nature Communications, 2018, 9(1): 2509.
E. F. Williams, M. R. Fernández-Ruiz, R. Magalhaes, R. Vanthillo, Z. Zhan, M. González-Herráez, et al., “Distributed sensing of microseisms and teleseisms with submarine dark fibers,” Nature Communication, 2019, 10(1): 5778.
F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Ф-OTDR for high spatial resolution intrusion detection of pipelines,” Optics Express, 2014, 22(11): 13804–13810.
Z. Peng, Y. Rao, F. Peng, H. J. Wu, X. H. Jia, and X. Y. Li, “Long distance phase-sensitive optical time-domain reflectometer based on heterodyne detection and forward Raman amplification,” Journal of Optoelectronics Laser, 2014, 25(4): 724–729.
H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over > 100 km,” Journal of Lightwave Technology, 2014, 32(8): 1510–1518.
Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, et al., “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Optics Letters, 2014, 39(20): 5866–5869.
X. Jia, Y. Rao, Z. Wang, W. L. Zhang, C. X. Yuan, X. D. Yan, et al., “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Optics Express, 2013, 21(18): 21208–21217.
M. Alahbabi, Y. Cho, and T. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” Journal of the Optical Society of America B, 2005, 22(6): 1321–1324.
Z. N. Wang, J. Li, M. Q. Fan, L. Zhang, F. Peng, H. Wu, et al., “Phase-sensitive optical time-domain reflectometry with Brillouin amplification,” Optics Letters, 2014, 39(15): 4313–4316.
H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Optics Letters, 2016, 41(24): 5648–5651.
A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Optics Letters, 2017, 42(2): 290–293.
X. He, S. Xie, F. Liu, S. Cao, L. Gu, X. Zheng, et al., “Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR,” Optics Letters, 2017, 42(3): 442–445.
Y. Fu, N. Xue, Z. Wang, B. Zhang, J. Xiong, and Y. Rao, “Impact of I/Q amplitude imbalance on coherent Ф-OTDR,” Journal of Lightwave Technology, 2018, 36(4): 1069–1075.
N. Xue, Y. Fu, C. Lu, J. Xiong, L. Yang, and Z. Wang, “Characterization and compensation of phase offset in Ф-OTDR with heterodyne detection,” Journal of Lightwave Technology, 2018, 36(23): 5481–5487.
Z. Wang, J. Jiang, Z. Wang, J. Xiong, and Y. J. Rao, “Bandwidth-enhanced quasi-distributed acoustic sensing with interleaved chirped pulses,” IEEE Sensors Journal, 2020, 20(21): 12739–12743.
J. Xiong, J. Jiang, Y. Wu, Y. Chen, L. Xie, Y. Fu, et al., “Chirped-pulse coherent-OTDR with predistortion,” Journal of Optics, 2018, 20(3): 034001.
Z. Wang, B. Zhang, J. Xiong, Y. Fu, S. Lin, J. Jiang, et al., “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet of Things Journal, 2018, 6(4): 6117–6124.
Y. Wu, Z. Wang, J. Xiong, J. Jiang, and Y. Rao, “Bipolar-coding Ф-OTDR with interference fading elimination and frequency drift compensation,” Journal of Lightwave Technology, 2020, 38(21): 6121–6128.
J. Jiang, Z. Wang, Z. Wang, Y. Wu, S. Lin, J. Xiong, et al., “Coherent Kramers-Kronig receiver for Ф-OTDR,” Journal of Lightwave Technology, 2019, 37(18): 4799–4807.
Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin, and Y. Chen, “Interference fading elimination with single rectangular pulse in Ф-OTDR,” Journal of Lightwave Technology, 2019, 37(13): 3381–3387.
S. Lin, Z. Wang, J. Xiong, Y. Fu, J. Jiang, Y. Wu, et al., “Rayleigh fading suppression in one-dimensional optical scatters,” IEEE Access, 2019, 7: 17125–17132.
J. Xiong, Z. Wang, Y. Wu, and Y. Rao, “Single-shot COTDR using sub-chirped-pulse extraction algorithm for distributed strain sensing,” Journal of Lightwave Technology, 2020, 38(7): 2028–2036.
R. D. Pascoe and T. N. Eichorn, “What is communication-based train control?” IEEE Vehicular Technology Magazine, 2009, 4(4): 16–21.
F. Peng, N. Duan, Y. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technology Letters, 2014, 26(20): 2055–2057.
Y. Zhan, “The harm and countermeasures of soil oil pollution in China,” Environmental Pollution and Control, 2008, 30(3): 91–93.
A. Egorov, J. Correa, A. Bóna, R. Pevzner, K. Tertyshnikov, S. Glubokovskikh, et al., “Elastic full-waveform inversion of vertical seismic profile data acquired with distributed acoustic sensors,” Geophysics, 2018, 83(3): R273–R281.
J. Ni, C. Wang, Y. Shang, X. Zhang, and Y. Zhao, “Distributed fiber-optic acoustic sensing for petroleum geology exploration,” Journal of Physics: Conference Series, 2018, 1065(65): 252029.
A. Mateeva, J. Lopez, H. Potters, J. Mestayer, B. Cox, D. Kiyashchenko, et al., “Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling,” Geophysical Prospecting, 2014, 62(4): 679–692.
J. Cole, R. Johnson, and P. Bhuta, “Fiber-optic detection of sound,” The Journal of the Acoustical Society of America, 1977, 62(5): 1136–1138.
J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Optical fiber acoustic sensor,” Applied Optics, 1977, 16(7): 1761–1762.
C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” Journal of Physics D: Applied Physics, 2004, 37(18): R197.
X. Liu, C. Wang, Y. Shang, C. Wang, W. Zhao, G. Peng, et al., “Distributed acoustic sensing with Michelson interferometer demodulation,” Photonic Sensors, 2017, 7(3): 193–198.
L. Y. Shao, S. Liu, S. Bandyopadhyay, F. Yu, W. Xu, C. Wang, et al., “Data-driven distributed optical vibration sensors: a review,” IEEE Sensors Journal, 2019, 20(12): 6224–6239.
Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” Journal of lightwave Technology, 2010, 28(22): 3243–3249.
T. Zhu, X. Xiao, Q. He, and D. Diao, “Enhancement of SNR and spatial resolution in phi-OTDR system by using two-dimensional edge detection method,” Journal of Lightwave Technology, 2013, 31(17): 2851–2856.
Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technology Letters, 2012, 24(7): 542–544.
X. Hui, S. Zheng, J. Zhou, H. Chi, X. Jin, and X. Zhang, “Hilbert-Huang transform time-frequency analysis in phi-OTDR distributed sensor,” IEEE Photonics Technology Letters, 2014, 26(23): 2403–2406.
H. Wu, J. Wang, X. Wu, and Y. Wu, “Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds,” Sensor Letters, 2012, 10(7): 1557–1561.
H. Wu, S. Xiao, X. Li, Z. Wang, J. Xu, and Y. Rao, “Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry(Φ-OTDR),” Journal of Lightwave Technology, 2015, 33(15): 3156–3162.
H. Zhu, C. Pan, and X. Sun, “Vibration waveform reproduction and location of OTDR based distributed optical-fiber vibration sensing system,” SPIE, 2013, 9062: 89931P.
Z. Wang, Z. Pan, Q. Ye, H. Cai, and Z. Fang, “Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence,” Chinese Journal of Lasers, 2015, 42(4): 0405010.
Q. Sun, H. Feng, X. Yan, and Z. Zeng, “Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction,” Sensors, 2015, 15(7): 15179–15197.
H. Wu, Y. Qian, W. Zhang, and C. Tang, “Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring,” Photonic Sensors, 2017, 7(4): 305–310.
A. K. Fedorov, M. N. Anufriev, A. A. Zhirnov, K. V. Stepanov, E. T. Nesterov, D. E. Namiot, et al., “Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems,” Review of Scientific Instruments, 2016, 87(3): 036107.
Q. Tian, C. Zhao, Y. Zhang, and H. Qu, “Intrusion signal recognition in OFPS under multi-level wavelet decomposition based on RVFL neural network,” Optik, 2017, 146: 38–50.
H. Wu, X. Liu, Y. Xiao, and Y. Rao, “A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMS) for pipeline safety monitoring with φ-OTDR,” Journal of Lightwave Technology, 2019, 37(19): 4991–5000.
L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional neural network-based data-driven fault diagnosis method,” IEEE Transactions on Industrial Electronics, 2017, 65(7): 5990–5998.
T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-time motor fault detection by 1-D convolutional neural networks,” IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067–7075.
J. Tejedor, J. Macias-Guarasa, H. Martins, S. Martin-Lopez, and M. Gonzalez-Herraez, “A contextual GMM-HMM smart fiber optic surveillance system for pipeline integrity threat detection,” Journal of Lightwave Technology, 2019, 37(18): 4514–4522.
J. Wu, L. Y. Guan, M. Bao, Y. Xu, and W. Ye, “Vibration events recognition of optical fiber based on multi-scale 1-D CNN,” Opto-Electronic Engineering, 2019, 46(05): 180493.
H. Wu, J. Chen, X. Liu, Y. Xiao, M. Wang, Y. Zheng, et al., “One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS,” Journal of Lightwave Technology, 2019, 37(17): 4359–4366.
H. Wu, M. Yang, S. Yang, H. Lu, C. Wang, and Y. Rao, “A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network,” IEEE Access, 2020, 8: 119448–119457.
S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, et al., “Random distributed feedback fibre laser,” Nature Photonics, 2010, 4(4): 231–235.
B. Han, Y. Rao, H. Wu, J. Yao, H. Guan, R. Ma, et al., “Low-noise high-order Raman fiber laser pumped by random lasing,” Optics Letters, 2020, 45(20): 5804–5807.
N. J. Lindsey, T. C. Dawe, and J. B. Ajo-Franklin, “Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing,” Science, 2019, 366(6469): 1103–1107.
B. N. Kuvshinov, “Interaction of helically wound fibre-optic cables with plane seismic waves,” Geophysical Prospecting, 2016, 64(3): 671–688.
J. C. Hornman, “Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables,” Geophysical Prospecting, 2016, 65(1): 35–46.
B. Han, H. Guan, J. Yao, et al., “Distributed acoustic sensing with sensitivity-enhanced optical cable,” IEEE Sensors Journal, 2020, DOI: 10.1109/JSEN.2020.3035002.