Weather forecasting for the Zhangjiakou competition zone of the Beijing 2022 Winter Olympic Games is a challenging task due to its complex terrain. Numerical weather prediction models generally perform poorly for cold air pools and winds over complex terrains, due to their low spatiotemporal resolution and limitations in the description of dynamics, thermodynamics, and microphysics in mountainous areas. This study proposes an ensemble-learning model, named ENSL, for surface temperature and wind forecasts at the venues of the Zhangjiakou competition zone, by integrating five individual models—linear regression, random forest, gradient boosting decision tree, support vector machine, and artificial neural network (ANN), with a ridge regression as meta model. The ENSL employs predictors from the high-resolution ECMWF model forecast (ECMWF-HRES) data and topography data, and targets from automatic weather station observations. Four categories of predictors (synoptic-pattern related fields, surface element fields, terrain, and temporal features) are fed into ENSL. The results demonstrate that ENSL achieves better performance and generalization than individual models. The root-mean-square error (RMSE) for the temperature and wind speed predictions is reduced by 48.2% and 28.5%, respectively, relative to ECMWF-HRES. For the gust speed, the performance of ENSL is consistent with ANN (best individual model) in the whole dataset, whereas ENSL outperforms on extreme gust samples (42.7% compared with 38.7% obtained by ECMWF-HRES in terms of RMSE reduction). Sensitivity analysis of predictors in the four categories shows that ENSL fits their feature importance rankings and physical explanations effectively.
Allard, D., A. Comunian, and P. Renard, 2012: Probability aggregation methods in geoscience. Math. Geosci., 44, 545–581. doi: 10.1007/s11004-012-9396-3.
Baran, S., and S. Lerch, 2016: Mixture EMOS model for calibrating ensemble forecasts of wind speed. Environmetrics, 27, 116–130. doi: 10.1002/env.2380.
Bonavita, M., R. Arcucci, A. Carrassi, et al., 2021: Machine learning for Earth system observation and prediction. Bull. Amer. Meteor. Soc., 102, E710–E716. doi: 10.1175/BAMS-D-20-0307.1.
Chen, M. X., Z. Y. Fu, F. Liang, et al., 2021: A review of SMART2022-FDP progress. Adv. Meteor. Sci. Technol., 11, 8–13. doi: 10.3969/j.issn.2095-1973.2021.06.002. (in Chinese)
Chen, Y. W., X. M. Huang, Y. Li, et al., 2020: Ensemble learning for bias correction of station temperature forecast based on ECMWF products. J. Appl. Meteor. Sci., 31, 494–503. doi: 10.11898/1001-7313.20200411. (in Chinese)
Cho, D., C. Yoo, J. Im, et al., 2020: Comparative assessment of various machine learning-based bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas. Earth Space Sci., 7, e2019EA000740. doi: 10.1029/2019EA000740.
Cho, D., C. Yoo, B. Son, et al., 2022: A novel ensemble learning for post-processing of NWP Model’s next-day maximum air temperature forecast in summer using deep learning and statistical approaches. Wea. Climate Extrem., 35, 100410. doi: 10.1016/j.wace.2022.100410.
Clarke, B., 2003: Comparing Bayes model averaging and stacking when model approximation error cannot be ignored. J. Mach. Learn. Res., 4, 683–712.
Fang, Y., Y. F. Wu, F. M. Wu, et al., 2023: Short-term wind speed forecasting bias correction in the Hangzhou area of China based on a machine learning model. Atmos. Oceanic Sci. Lett., 16, 100339. doi: 10.1016/j.aosl.2023.100339.
Flora, M. L., C. K. Potvin, A. McGovern, et al., 2024: A machine learning explainability tutorial for atmospheric sciences. Artif. Intell. Earth Syst., 3, e230018. doi: 10.1175/AIES-D-23-00 18.1.
Florinsky, I. V., 2017: An illustrated introduction to general geomorphometry. Prog. Phys. Geogr. Earth Environ., 41, 723–752. doi: 10.1177/0309133317733667.
Fritsch, J. M., J. Hilliker, J. Ross, et al., 2000: Model consensus. Wea. Forecasting, 15, 571–582. doi: 10.1175/1520-0434(2000)015<0571:MC>2.0.CO;2.
Fu, X. M., H. Y. Liu, T. T. Li, et al., 2021: Analysis of mountain-valley breeze on Biathlon venue of 2022 Beijing Winter Olympics. Desert Oasis Meteor., 15, 24–29. (in Chinese)
Gneiting, T., and R. Ranjan, 2013: Combining predictive distributions. Electron. J. Statist., 7, 1747–1782. doi: 10.1214/13-EJS823.
Goutham, N., B. Alonzo, A. Dupré, et al., 2021: Using machine-learning methods to improve surface wind speed from the outputs of a numerical weather prediction model. Bound.-Layer Meteor., 179, 133–161. doi: 10.1007/s10546-020-005 86-x.
Han, L., J. Z. Sun, W. Zhang, et al., 2017: A machine learning nowcasting method based on real-time reanalysis data. J. Geophys. Res. Atmos., 122, 4038–4051. doi: 10.1002/2016jd 025783.
Hansen, L. K., and P. Salamon, 1990: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell., 12, 993–1001. doi: 10.1109/34.58871.
Jergensen, G. E., A. McGovern, R. Lagerquist, et al., 2020: Classifying convective storms using machine learning. Wea. Forecasting, 35, 537–559. doi: 10.1175/WAF-D-19-0170.1.
Jia, C. H., J. J. Dou, S. G. Miao, et al., 2019: Analysis of characteristics of mountain-valley winds in the complex terrain area over Yanqing–Zhangjiakou in the winter. Acta Meteor. Sinica, 77, 475–488. doi: 10.11676/qxxb2019.033. (in Chinese)
Jiang, J. W., F. C. Fu, Y. X. Shao, et al., 2019: Distributed gradient boosting decision tree algorithm for high-dimensional and multi-classification problems. J. Software, 30, 784–798. doi: 10.13328/j.cnki.jos.005690. (in Chinese)
Kelsey, E. P., M. D. Cann, K. M. Lupo, et al., 2019: Synoptic to microscale processes affecting the evolution of a cold-air pool in a northern New England forested mountain valley. J. Appl. Meteor. Climatol., 58, 1309–1324. doi: 10.1175/JAMC-D-17-0329.1.
Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 2175–2193. doi: 10.1175/WAF-D-17-0038.1.
Li, H. C., C. Yu, J. J. Xia, et al., 2019: A model output machine learning method for grid temperature forecasts in the Beijing area. Adv. Atmos. Sci., 36, 1156–1170. doi: 10.1007/s00376-019-9023-z.
Li, J. R., J. L. Fu, Y. W. Tao, et al., 2022: Temperature and wind characteristic analysis in Zhangjiakou Olympic area for the Winter Olympic Games. Meteor. Mon., 48, 149–161. doi: 10.7519/j.issn.1000-0526.2022.010301. (in Chinese)
Linardatos, P., V. Papastefanopoulos, and S. Kotsiantis, 2021: Explainable AI: A review of machine learning interpretability methods. Entropy, 23, 18. doi: 10.3390/e23010018.
Liu, H. Y., Y. H. Duan, T. T. Li, et al., 2020: Observation analysis on cold air lake structure in the biathlon venue for Beijing 2022 Winter Olympic Games. J. Arid Meteor., 38, 929–936. doi: 10.11755/j.issn.1006-7639(2020)-06-0929. (in Chinese)
Liu, X. W., W. B. Huang, Y. S. Jiang, et al., 2021: Study of the classified identification of the strong convective weathers based on the LightGBM Algorithm. Plateau Meteor., 40, 909–918. (in Chinese)
Mallet, V., G. Stoltz, and B. Mauricette, 2009: Ozone ensemble forecast with machine learning algorithms. J. Geophys. Res. Atmos., 114, D05307. doi: 10.1029/2008JD009978.
Mass, C. F., J. Baars, G. Wedam, et al., 2008: Removal of systematic model bias on a model grid. Wea. Forecasting, 23, 438–459. doi: 10.1175/2007WAF2006117.1.
Men, X. L., R. L. Jiao, D. Wang, et al., 2019: A temperature correction method for multi-model ensemble forecast in North China based on machine learning. Climatic Environ. Res., 24, 116–124. doi: 10.3878/j.issn.1006-9585.2018.18049. (in Chinese)
Mercer, A. E., M. B. Richman, H. B. Bluestein, et al., 2008: Statistical modeling of downslope windstorms in Boulder, Colorado. Wea. Forecasting, 23, 1176–1194. doi: 10.1175/2008 WAF2007067.1.
Reeves, H. D., and D. J. Stensrud, 2009: Synoptic-scale flow and valley cold pool evolution in the western United States. Wea. Forecasting, 24, 1625–1643. doi: 10.1175/2009WAF222223 4.1.
Ren, P., M. X. Chen, W. H. Cao, et al., 2020: Error analysis and correction of short-term numerical weather prediction under complex terrain based on machine learning. Acta Meteor. Sinica, 78, 1002–1020. doi: 10.11676/qxxb2020.060. (in Chinese)
Silva, S. J., C. A. Keller, and J. Hardin, 2022: Using an explainable machine learning approach to characterize Earth System model errors: Application of SHAP analysis to modeling lightning flash occurrence. J. Adv. Model. Earth Syst., 14, e2021MS002881. doi: 10.1029/2021MS002881.
Smith, S. A., A. R. Brown, S. B. Vosper, et al., 2010: Observations and simulations of cold air pooling in valleys. Bound.-Layer Meteor., 134, 85–108. doi: 10.1007/s10546-009-9436-9.
Sun, Q. D., R. L. Jiao, J. J. Xia, et al., 2019: Adjusting wind speed prediction of numerical weather forecast model based on machine learning methods. Meteor. Mon., 45, 426–436. (in Chinese)
Wang, Y. F., G. P. Li, Z. M. Wang, et al., 2022: Numerical simulation of the formation and dissipation of a cold air pool in the Chongli Winter Olympic Games Area. Chinese J. Atmos. Sci., 46, 206–224. (in Chinese)
Woodcock, F., and C. Engel, 2005: Operational consensus forecasts. Wea. Forecasting, 20, 101–111. doi: 10.1175/WAF-831.1.
Xia, J. J., H. C. Li, Y. Y. Kang, et al., 2020: Machine learning-based weather support for the 2022 Winter Olympics. Adv. Atmos. Sci., 37, 927–932. doi: 10.1007/s00376-020-0043-5.
Yang, L., F. Han, M. X. Chen, et al., 2018: Thunderstorm gale identification method based on support vector machine. J. Appl. Meteor. Sci., 29, 680–689. doi: 10.11898/1001-7313.2018 0604. (in Chinese)
Zamo, M., L. Bel, and O. Mestre, 2021: Sequential aggregation of probabilistic forecasts—Application to wind speed ensemble forecasts. J. Roy. Stat. Soc. Ser. C: Appl. Stat., 70, 202–225. doi: 10.1111/rssc.12455.
Zhang, Y. B., M. X. Chen, L. Han, et al., 2022: Multi-element deep learning fusion correction method for numerical weather prediction. Acta Meteor. Sinica, 80, 153–167. doi: 10.11676/qxxb2021.066. (in Chinese)
Zhang, Y. H., and A. Z. Ye, 2021: Machine learning for precipitation forecasts postprocessing: Multimodel comparison and experimental investigation. J. Hydrometeorol., 22, 3065–3085. doi: 10.1175/jhm-d-21-0096.1.
Zhou, C. S., H. C. Li, C. Yu, et al., 2022: A station-data-based model residual machine learning method for fine-grained meteorological grid prediction. Appl. Math. Mech., 43, 155–166. doi: 10.1007/s10483-022-2822-9.