Extreme heat events over both lands and oceans have increased in frequency and intensity, and exerted profound impacts on human and natural systems. More impactful is their concurrence, leading to larger losses in health, food, economy, and ecosystem, but receiving far less attention. Understanding the mechanism for such marine–terrestrial compound heatwaves is a prerequisite to prediction and disaster prevention. Based on air particle trajectory analysis, we identified 87 compound heatwaves in China and adjacent oceans in summers of 1982–2021, with the connection between marine and terrestrial heatwaves particularly prominent between the oceans to Northeast Philippines and the lands in South/Southeast China. Through composite and case analysis, it is found that the connection is established by simultaneous governance of (i) the western Pacific subtropical high (WPSH), (ii) a dipole circulation pattern constituted by the WPSH and weak tropical cyclones (TCs), or (iii) strong and closer-to-coast TCs, each of which causes anomalously strong descending motion, increased incoming solar radiation, and strengthened adiabatic heating on lands. The marine heatwaves act to supply more moisture through enhanced evaporation, and/or intensify TCs that pass the region. The air particle tracking shows that these moister air masses are then advected by the WPSH and/or TCs to South/Southeast China, converting the adiabatic heating-caused dry heatwaves there into humid ones and thus adding to the heat stress. These diagnoses provide new insight into the mechanistic understanding and forecast precursors for terrestrial heatwaves, through the lens of compound events.
Aboelkhair, H., B. Mohamed, M. Morsy, et al., 2023: Co-occurrence of atmospheric and oceanic heatwaves in the eastern Mediterranean over the last four decades. Remote Sens., 15, 1841, doi: 10.3390/rs15071841.
Amaya, D. J., A. J. Miller, S.-P. Xie, et al., 2020: Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun., 11, 1903, doi: 10.1038/s41467-020-15820-w.
Athanase, M., A. Sánchez-Benítez, H. F. Goessling, et al., 2024: Projected amplification of summer marine heatwaves in a warming Northeast Pacific Ocean. Commun. Earth Environ., 5, 53, doi: 10.1038/s43247-024-01212-1.
Baier, K., M. Duetsch, M. Mayer, et al., 2022: The role of atmospheric transport for El Niño–Southern Oscillation teleconnections. Geophys. Res. Lett., 49, e2022GL100906, doi: 10.1029/2022GL100906.
Baier, K., M. Rubel, and A. Stohl, 2023: The 3-week-long transport history and deep tropical origin of the 2021 extreme heat wave in the Pacific Northwest. Geophys. Res. Lett., 50, e2023GL105865, doi: 10.1029/2023GL105865.
Barriopedro, D., R. García-Herrera, C. Ordóñez, et al., 2023: Heat waves: Physical understanding and scientific challenges. Rev. Geophys., 61, e2022RG000780, doi: 10.1029/2022RG000780.
Bastos, A., C. M. Gouveia, R. M. Trigo, et al., 2013: Comparing the impacts of 2003 and 2010 heatwaves in NPP over Europe. Biogeosci. Discuss., 10, 15,879–15,911, doi: 10.5194/BGD-10-15879-2013.
Bond, N. A., M. F. Cronin, H. J. Freeland, et al., 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 3414–3420, doi: 10.1002/2015GL063306.
Chen, H.-H., Y. T. Wang, P. Xiu, et al., 2023: Combined oceanic and atmospheric forcing of the 2013/14 marine heatwave in the Northeast Pacific. npj Climate Atmos. Sci., 6, 3, doi: 10.1038/s41612-023-00327-0.
Chen, Y., and P. M. Zhai, 2017: Simultaneous modulations of precipitation and temperature extremes in southern parts of China by the boreal summer intraseasonal oscillation. Climate Dyn., 49, 3363–3381, doi: 10.1007/s00382-016-3518-4.
Cheng, L. J., K. von Schuckmann, J. P. Abraham, et al., 2022: Past and future ocean warming. Nat. Rev. Earth Environ., 3, 776–794, doi: 10.1038/s43017-022-00345-1.
Chiswell, S. M., 2021: Atmospheric wavenumber-4 driven South Pacific marine heat waves and marine cool spells. Nat. Commun., 12, 4779, doi: 10.1038/s41467-021-25160-y.
Deng, K. Q., S. Yang, D. J. Gu, et al., 2020: Record-breaking heat wave in southern China and delayed onset of South China Sea summer monsoon driven by the Pacific subtropical high. Climate Dyn., 54, 3751–3764, doi: 10.1007/s00382-020-05203-8.
Dole, R., M. Hoerling, J. Perlwitz, et al., 2011: Was there a basis for anticipating the 2010 Russian heat wave. Geophys. Res. Lett., 38, L06702, doi: 10.1029/2010GL046582.
Dzwonkowski, B., J. Coogan, S. Fournier, et al., 2020: Compounding impact of severe weather events fuels marine heatwave in the coastal ocean. Nat. Commun., 11, 4623, doi: 10.1038/s41467-020-18339-2.
Fang, G. S., L. Zhao, S. Y. Cao, et al., 2020: Estimation of tropical cyclone wind hazards in coastal regions of China. Nat. Hazards Earth Syst. Sci., 20, 1617–1637, doi: 10.5194/nhess-20-1617-2020.
Fischer, E. M., and C. Schär, 2009: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn., 33, 917–935, doi: 10.1007/S00382-008-0473-8.
Fischer, E. M., S. I. Seneviratne, P. L. Vidale, et al., 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 5081–5099, doi: 10.1175/JCLI4288.1.
Fischer, E. M., U. Beyerle, L. Bloin-Wibe, et al., 2023: Storylines for unprecedented heatwaves based on ensemble boosting. Nat. Commun., 14, 4643, doi: 10.1038/s41467-023-40112-4.
Gao, M. N., B. Wang, J. Yang, et al., 2018: Are peak summer sultry heat wave days over the Yangtze–Huaihe river basin predictable. J. Climate, 31, 2185–2196, doi: 10.1175/JCLI-D-17-0342.1.
Gao, Y., Y. B. Wu, X. W. Guo, et al., 2023: More frequent and persistent heatwaves due to increased temperature skewness projected by a high-resolution Earth System Model. Geophys. Res. Lett., 50, e2023GL105840, doi: 10.1029/2023GL105840.
Grotjahn, R., R. Black, R. Leung, et al., 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 1151–1184, doi: 10.1007/s00382-015-2638-6.
Guo, X. W., Y. Gao, S. Q. Zhang, et al., 2022: Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nat. Climate Change, 12, 179–186, doi: 10.1038/s41558-021-01266-5.
Herrera-Estrada, J. E., and N. S. Diffenbaugh, 2020: Landfalling droughts: Global tracking of moisture deficits from the oceans onto land. Water Resour. Res., 56, e2019WR026877, doi: 10.1029/2019WR026877.
Hirsch, A. L., J. P. Evans, G. Di Virgilio, et al., 2019: Amplification of Australian heatwaves via local land–atmosphere coupling. J. Geophys. Res. Atmos., 124, 13,625–13,647, doi: 10.1029/2019JD030665.
Hobday, A. J., L. V. Alexander, S. E. Perkins, et al., 2016: A hierar-chical approach to defining marine heatwaves. Prog. Ocean-ogr., 141, 227–238, doi: 10.1016/J.POCEAN.2015.12.014.
Holbrook, N. J., I. D. Goodwin, S. McGregor, et al., 2011: ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep Sea Res. Part II Top. Stud. Oceanogr., 58, 547–558, doi: 10.1016/J.DSR2.2010.06.007.
Holbrook, N. J., H. A. Scannell, A. Sen Gupta, et al., 2019: A global assessment of marine heatwaves and their drivers. Nat. Commun., 10, 2624, doi: 10.1038/s41467-019-10206-z.
Holbrook, N. J., A. Sen Gupta, E. C. J. Oliver, et al., 2020: Keeping pace with marine heatwaves. Nat. Rev. Earth Environ., 1, 482–493., doi: 10.1038/s43017-020-0068-4.
Hu, L. Q., 2021: A global assessment of coastal marine heatwaves and their relation with coastal urban thermal changes. Geophys. Res. Lett., 48, e2021GL093260, doi: 10.1029/2021GL093260.
Huang, B. Y., C. Y. Liu, V. Banzon, et al., 2021: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Climate, 34, 2923–2939, doi: 10.1175/jcli-d-20-0166.1.
Jiang, L., and M. Xia, 2017: Wind effects on the spring phytoplankton dynamics in the middle reach of the Chesapeake Bay. Ecol. Modell., 363, 68–80, doi: 10.1016/J.ECOLMODEL.2017.08.026.
Karnauskas, K. B., 2020: Physical diagnosis of the 2016 great barrier reef bleaching event. Geophys. Res. Lett., 47, e2019GL086177, doi: 10.1029/2019GL086177.
Koehlinger, J. A., J. Newton, J. Mickett, et al., 2023: Large and transient positive temperature anomalies in Washington’s coastal nearshore waters during the 2013–2015 Northeast Pacific marine heatwave. PLoS One, 18, e0280646, doi: 10.1371/journal.pone.0280646.
Kohonen, T., 1982: Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 59–69, doi: 10.1007/BF00337288.
Lau, N.-C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 4761–4784, doi: 10.1175/JCLI-D-11-00575.1.
Lee, T., W. R. Hobbs, J. K. Willis, et al., 2010: Record warming in the South Pacific and western Antarctica associated with the strong central–Pacific El Niño in 2009–10. Geophys. Res. Lett., 37, L19704, doi: 10.1029/2010GL044865.
Lemordant, L., P. Gentine, M. Stéfanon, et al., 2016: Modification of land–atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude. Geophys. Res. Lett., 43, 10,240–10,248, doi: 10.1002/2016GL069896.
Li, D. L., Y. Chen, J. F. Qi, et al., 2023: Attribution of the July 2021 record-breaking Northwest Pacific marine heatwave to global warming, atmospheric circulation, and ENSO. Bull. Amer. Meteor. Soc., 104, E291–E297, doi: 10.1175/bams-d-22-0142.1.
Li, X. Z., Y. Chen, Y. N. Zhu, et al., 2023: Underestimated increase and intensification of humid-heat extremes across southeast China due to humidity data inhomogeneity. Front. Environ. Sci., 10, 1104039, doi: 10.3389/fenvs.2022.1104039.
Li, Y., G. Y. Ren, Q. Y. Wang, et al., 2019: More extreme marine heatwaves in the China Seas during the global warming hiatus. Environ. Res. Lett., 14, 104010, doi: 10.1088/1748-9326/ab28bc.
Liu, C., W. J. Zhang, M. F. Stuecker, et al., 2019: Pacific meridional mode-western North Pacific tropical cyclone linkage explained by tropical Pacific quasi-decadal variability. Geophys. Res. Lett., 46, 13,346–13,354, doi: 10.1029/2019GL085340.
Lu, R.-Y., and R.-D. Chen, 2016: A review of recent studies on extreme heat in China. Atmos. Ocean. Sci. Lett., 9, 114–121, doi: 10.1080/16742834.2016.1133071.
Lu, R. Y., K. Xu, R. D. Chen, et al., 2023: Heat waves in summer 2022 and increasing concern regarding heat waves in general. Atmos. Ocean. Sci. Lett., 16, 100290, doi: 10.1016/j.aosl.2022.100290.
Luo, M., and N.-C. Lau, 2017: Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate, 30, 703–720, doi: 10.1175/JCLI-D-16-0269.1.
Marin, M., M. Feng, H. E. Phillips, et al., 2021: A global, multiproduct analysis of coastal marine heatwaves: Distribution, characteristics, and long-term trends. J. Geophys. Res. Oceans, 126, e2020JC016708, doi: 10.1029/2020JC016708.
Marshall, A. G., and H. H. Hendon, 2014: Impacts of the MJO in the Indian Ocean and on the Western Australian coast. Climate Dyn., 42, 579–595, doi: 10.1007/s00382-012-1643-2.
Matsueda, M., 2011: Predictability of Euro–Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, doi: 10.1029/2010GL046557.
McMichael, A. J., and E. Lindgren, 2011: Climate change: Present and future risks to health, and necessary responses. J. Intern. Med., 270, 401–413, doi: 10.1111/j.1365-2796.2011.02415.x.
Mei, W., and S.-P. Xie, 2016: Intensification of landfalling typhoons over the Northwest Pacific since the late 1970s. Nat. Geosci., 9, 753–757, doi: 10.1038/NGEO2792.
Nakamura, J., S. J. Camargo, A. H. Sobel, et al., 2017: Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos., 122, 9721–9744, doi: 10.1002/2017JD027007.
Oliver, E. C. J., M. G. Donat, M. T. Burrows, et al., 2018: Longer and more frequent marine heatwaves over the past century. Nat. Commun., 9, 1324, doi: 10.1038/s41467-018-03732-9.
Pathmeswaran, C., A. Sen Gupta, S. E. Perkins-Kirkpatrick, et al., 2022: Exploring potential links between co-occurring coastal terrestrial and marine heatwaves in Australia. Front. Climate, 4, 792730, doi: 10.3389/fclim.2022.792730.
Perkins, S. E., and L. V. Alexander, 2013: On the measurement of heat waves. J. Climate, 26, 4500–4517, doi: 10.1175/JCLI-D-12-00383.1.
Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwaves. Nat. Commun., 11, 3357, doi: 10.1038/s41467-020-16970-7.
Pun, I.-F., H.-H. Hsu, I.-J. Moon, et al., 2023: Marine heatwave as a supercharger for the strongest typhoon in the East China Sea. npj Climate Atmos. Sci., 6, 128, doi: 10.1038/s41612-023-00449-5.
Robinson, P. J., 2001: On the definition of a heat wave. J. Appl. Meteor., 40, 762–775, doi: 10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.
Rodrigues, R. R., A. S. Taschetto, A. Sen Gupta, et al., 2019: Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci., 12, 620–626, doi: 10.1038/s41561-019-0393-8.
Ross, A. C., and C. A. Stock, 2022: Probabilistic extreme SST and marine heatwave forecasts in Chesapeake Bay: A forecast model, skill assessment, and potential value. Front. Mar. Sci., 9, 896961, doi: 10.3389/fmars.2022.896961.
Röthlisberger, M., and L. Papritz, 2023: Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci., 16, 210–216, doi: 10.1038/s41561-023-01126-1.
Ruthrof, K. X., D. D. Breshears, J. B. Fontaine, et al., 2018: Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep., 8, 13094, doi: 10.1038/s41598-018-31236-5.
Salinger, M. J., J. Renwick, E. Behrens, et al., 2019: The unprecedented coupled ocean–atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett., 14, 044023, doi: 10.1088/1748-9326/ab012a.
Saranya, J. S., M. K. Roxy, P. Dasgupta, et al., 2022: Genesis and trends in marine heatwaves over the tropical Indian Ocean and their interaction with the Indian summer monsoon. J. Geophys. Res. Oceans, 127, e2021JC017427, doi: 10.1029/2021JC017427.
Schubert, S. D., H. L. Wang, R. D. Koster, et al., 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 3169–3207, doi: 10.1175/JCLI-D-13-00360.1.
Schumacher, D. L., J. Keune, C. C. Van Heerwaarden, et al., 2019: Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci., 12, 712–717, doi: 10.1038/s41561-019-0431-6.
Schumacher, D. L., M. Hauser, and S. I. Seneviratne, 2022: Drivers and mechanisms of the 2021 Pacific Northwest heatwave. Earth’s Future, 10, e2022EF002967, doi: 10.1029/2022EF002967.
Sen Gupta, A., M. Thomsen, J. A. Benthuysen, et al., 2020: Drivers and impacts of the most extreme marine heatwave events. Sci. Rep., 10, 19359, doi: 10.1038/s41598-020-75445-3.
Seneviratne, S. I., D. Lüthi, M. Litschi, et al., 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205–209, doi: 10.1038/nature05095.
Shen, Y. X., Y. Sun, S. J. Camargo, et al., 2018: A quantitative method to evaluate tropical cyclone tracks in climate models. J. Atmos. Oceanic Technol., 35, 1807–1818, doi: 10.1175/JTECH-D-18-0056.1.
Stein, A. F., R. R. Draxler, G. D. Rolph, et al., 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077, doi: 10.1175/BAMS-D-14-00110.1.
Stull, R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteor. Climatol., 50, 2267–2269, doi: 10.1175/JAMC-D-11-0143.1.
Tao, P. H., and Y. C. Zhang, 2019: Large-scale circulation features associated with the heat wave over Northeast China in summer 2018. Atmos. Ocean. Sci. Lett., 12, 254–260, doi: 10.1080/16742834.2019.1610326.
Teng, H. Y., G. Branstator, H. L. Wang, et al., 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 1056–1061, doi: 10.1038/NGEO1988.
Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res. Atmos., 117, D17103, doi: 10.1029/2012JD018020.
Ullah, S., Q. L. You, D. L. Chen, et al., 2022: Future population exposure to daytime and nighttime heat waves in South Asia. Earth’s Future, 10, e2021EF002511, doi: 10.1029/2021EF002511.
Wang, F., X. G. Li, X. H. Tang, et al., 2023: The seas around China in a warming climate. Nat. Rev. Earth Environ., 4, 535–551, doi: 10.1038/s43017-023-00453-6.
Wernberg, T., D. A. Smale, F. Tuya, et al., 2013: An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Climate Change, 3, 78–82, doi: 10.1038/NCLIMATE1627.
Wernberg, T., S. Bennett, R. C. Babcock, et al., 2016: Climate-driven regime shift of a temperate marine ecosystem. Science, 353, 169–172, doi: 10.1126/science.aad8745.
White, R. H., S. Anderson, J. F. Booth, et al., 2023: The unprecedented Pacific Northwest heatwave of June 2021. Nat. Commun., 14, 727, doi: 10.1038/s41467-023-36289-3.
Yang, J., M. G. Zhou, Z. P. Ren, et al., 2021: Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun., 12, 1039, doi: 10.1038/s41467-021-21305-1.
Yao, Y. L., J. J. Wang, J. J. Yin, et al., 2020: Marine heatwaves in China’s marginal seas and adjacent offshore waters: Past, present, and future. J. Geophys. Res. Oceans, 125, e2019JC015801, doi: 10.1029/2019JC015801.
Zhu, Y. N., L. J. Cao, G. L. Tang, et al., 2015: Homogenization of surface relative humidity over China. Prog. Inquistiones Mutatione Climatis, 11, 379–386, doi: 10.3969/j.issn.1673-1719.2015.06.001. (in Chinese)