Gust fronts, which are characterized by strong winds and intense wind shear, pose a threat to both aviation and public safety. To aid forecasters in issuing timely warnings for this hazardous weather phenomenon, a deep learning-based automatic gust front identification algorithm is proposed in this study. The algorithm utilizes Mask Region-based Convolutional Neural Network (Mask R-CNN), a state-of-the-art instance segmentation model, trained on a large dataset of 2623 gust front samples from S-band weather radar volume scans in East China and the North China Plain between 2009 and 2016. Extensive data preprocessing and manual annotation are performed to prepare the training dataset. The optimized model achieves impressive performance on a test set of 604 samples, with a detection probability of 93.21%, a false alarm rate of 3.60%, a missed alarm rate of 6.79%, and a critical success index of 90.08%. The algorithm demonstrates robust identification capabilities across gust fronts of varying scales, types, and parent thunderstorm systems, highlighting its operational applicability.
Arul, M., A. Kareem, M. Burlando, et al., 2022: Machine learning based automated identification of thunderstorms from anemometric records using shapelet transform. J. Wind Eng. Ind. Aerod., 220, 104856, doi: 10.1016/j.jweia.2021.104856.
Bresch, J. F., J. G. Powers, C. S. Schwartz, et al., 2021: Objective identification of thunderstorm gust fronts in numerical weather prediction models for fire weather forecasting. Int. J. Wildland. Fire, 30, 513–535, doi: 10.1071/WF20059.
Craig Goff, R., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440, doi: 10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.
Delanoy, R. L., and S. W. Troxel, 1993: Machine intelligent gust front detection. Lincoln Lab J., 6, 187–212.
Fournier, M. B., and J. O. Haerter, 2019: Tracking the gust fronts of convective cold pools. J. Geophys. Res. Atmos., 124, 11,103–11,117, doi: 10.1029/2019JD030980.
Han, Y. L., J. Liu, D. S. Sun, et al., 2020: Fine gust front structure observed by coherent Doppler lidar at Lanzhou airport (103°49′E, 36°03′N). Appl. Opt., 59, 2686–2694, doi: 10.1364/AO.384634.
He, K. M., X. Y. Zhang, S. Q. Ren, et al., 2015: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell., 37, 1904–1916, doi: 10.1109/TPAMI.2015.2389824.
He, N., Q. L. Ding, X. D. Yu, et al., 2020: Statistical analysis of thunderstorm gust front characteristics in Beijing and surrounding areas. Acta Meteor. Sinica, 78, 250–259, doi: 10.11676/qxxb2020.013. (in Chinese)
Hwang, Y., T. Y. Yu, V. Lakshmanan, et al., 2017: Neuro-fuzzy gust front detection algorithm with S-band polarimetric radar. IEEE. Trans. Geosci. Remote Sens., 55, 1618–1628, doi: 10.1109/TGRS.2016.2628520.
Kolios, S., 2023: Hail detection from Meteosat satellite imagery using a deep learning neural network and a new remote sensing index. Adv. Space Res., 72, 3009–3021, doi: 10.1016/j.asr.2023.06.016.
Kwon, D. K., and A. Kareem, 2019: Towards codification of thunderstorm/downburst using gust front factor: Model-based and data-driven perspectives. Eng. Struct., 199, 109608, doi: 10.1016/j.engstruct.2019.109608.
Leng, L., Y. J. Xiao, and T. Wu, 2016: Automatic recognition of gust fronts based on mathematical morphology. Meteor. Sci. Technol., 44, 1–6, 46, doi: 10.3969/j.issn.1671-6345.2016.01.001. (in Chinese)
Liu, R. F., H. N. Dai, Y. Y. Chen, et al., 2024: A study on the DAM-EfficientNet hail rapid identification algorithm based on FY-4A_AGRI. Sci. Rep., 14, 3505, doi: 10.1038/s41598-024-54142-5.
Luchetti, N. T., K. Friedrich, C. E. Rodell, et al., 2020: Characterizing thunderstorm gust fronts near complex terrain. Mon. Wea. Rev., 148, 3267–3286, doi: 10.1175/MWR-D-19-0316.1.
Ren, S. Q., K. M. He, R. Girshick, et al., 2017: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell., 39, 1137–1149, doi: 10.1109/TPAMI.2016.2577031.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485, doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.
Tian, H. Y., Z. Q. Hu, F. Z. Wang, et al., 2024: Radar echo recognition of gust front based on deep learning. Remote Sens., 16, 439, doi: 10.3390/rs16030439.
Uyeda, H., and D. S. Zrnić, 1986: Automatic detection of gust fronts. J. Atmos. Oceanic Technol., 3, 36–50, doi: 10.1175/1520-0426(1986)003<0036:ADOGF>2.0.CO;2.
Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082, doi: 10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.
Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536, doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.
Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, et al., 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 1184–1206, doi: 10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.
Xi, B. Z., X. D. Yu, L. Sun, et al., 2015: Generating mechanism and type of gust front and its subjective identification methods. Meteor. Mon., 41, 133–142. (in Chinese)
Xie, J. L., C. X. Lan, H. L. Yang, et al., 2022: Tower-observed structural evolution of the low-level boundary layer before, during, and after gust front passage in a coastal area at low latitude. Wea. Climate Extrem., 36, 100429, doi: 10.1016/j.wace.2022.100429.
Xu, Y. F., F. Zhao, C. Y. Mao, et al., 2020: Gust front detection algorithm based on deep convolutional neural network. Torrential Rain and Disasters, 39, 81–88, doi: 10.3969/j.issn.1004-9045.2020.01.009. (in Chinese)
Yuan, Y., P. Wang, D. Wang, et al., 2018: An algorithm for automated identification of gust fronts from Doppler radar data. J. Meteor. Res., 32, 444–455, doi: 10.1007/s13351-018-7089-7.
Zeng, Q. Y., Z. P. Qing, M. Zhu, et al., 2022: Application of random forest algorithm on tornado detection. Remote Sens., 14, 4909, doi: 10.3390/rs14194909.
Zheng, J. F., J. Zhang, K. Y. Zhu, et al., 2014: Gust front statistical characteristics and automatic identification algorithm for CINRAD. J. Meteor. Res., 28, 607–623, doi: 10.1007/s13351-014-3240-2.