Given the chaotic nature of the atmosphere and inevitable initial condition errors, constructing effective initial perturbations (IPs) is crucial for the performance of a convection-allowing ensemble prediction system (CAEPS). The IP growth in the CAEPS is scale- and magnitude-dependent, necessitating the investigation of the impacts of IP scales and magnitudes on CAEPS. Five comparative experiments were conducted by using the China Meteorological Administration Mesoscale Numerical Weather Prediction System (CMA-MESO) 3-km model for 13 heavy rainfall events over eastern China: smaller-scale IPs with doubled magnitudes, larger-, meso-, and smaller-scale IPs; and a chaos seeding experiment as a baseline. First, the constructed IPs outperform unphysical chaos seeding in perturbation growth and ensemble performance. Second, the daily variation of smaller-scale perturbations is more sensitive to convective activity because smaller-scale perturbations during forecasts reach saturation faster than meso- and larger-scale perturbations. Additionally, rapid downscaling cascade that saturates the smallest-scale perturbation within 6 h for larger- and meso-scale IPs is stronger in the lower troposphere and near-surface. After 9–12 h, the disturbance development of large-scale IPs is the largest in each layer on various scales. Moreover, thermodynamic perturbations, concentrated in the lower troposphere and near-surface with meso- and smaller-scale components being dominant, are smaller and more responsive to convective activity than kinematic perturbations, which are concentrated on the middle–upper troposphere and predominantly consist of larger- and meso-scale components. Furthermore, the increasing magnitude of smaller-scale IPs enables only their smaller-scale perturbations in the first 9 h to exceed those of larger- and meso-scale IPs. Third, for forecast of upper-air and surface variables, larger-scale IPs warrant a more reliable and skillful CAEPS. Finally, for precipitation, larger-scale IPs perform best for light rain at all forecast times, whereas meso-scale IPs are optimal for moderate and heavy rains at 6-h forecast time. Increasing magnitude of smaller-scale IPs improves the probability forecast skills for heavy rains during the first 3–6 h.
Ancell, B. C., A. Bogusz, M. J. Lauridsen, et al., 2018: Seeding chaos: The dire consequences of numerical noise in NWP perturbation experiments. Bull. Amer. Meteor. Soc., 99, 615–628, https://doi.org/10.1175/BAMS-D-17-0129.1.
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, https://doi.org/10.1038/nature14956.
Bei, N. F., and F. Q. Zhang, 2007: Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quart. J. Roy. Meteor. Soc., 133, 83–99, https://doi.org/10.1002/qj.20.
Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270, https://doi.org/10.1002/qj.49712152203.
Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1–3, https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2.
Buizza, R., 2019: Introduction to the special issue on “25 years of ensemble forecasting”. Quart. J. Roy. Meteor. Soc., 145, 1–11, https://doi.org/10.1002/qj.3370.
Clark, A. J., W. A. Gallus Jr., M. Xue, et al., 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 1121–1140, https://doi.org/10.1175/2009WAF2222222.1.
Clark, A. J., I. L. Jirak, S. R. Dembek, et al., 2018: The community leveraged unified ensemble (CLUE) in the 2016 NOAA/hazardous weather testbed spring forecasting experiment. Bull. Amer. Meteor. Soc., 99, 1433–1448, https://doi.org/10.1175/BAMS-D-16-0309.1.
Clark, P., N. Roberts, H. Lean, et al., 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165–181, https://doi.org/10.1002/met.1538.
Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 1812–1829, https://doi.org/10.1175/1520-0493(2002)130%3C1812:SDOTDA%3E2.0.CO;2.
Ding, Y. H., 2019: The major advances and development process of the theory of heavy rainfalls in China. Torrential Rain Disaster, 38, 395–406. (in Chinese)
Duc, L., K. Saito, and H. Seko, 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus A: Dyn. Meteor. Oceanogr., 65, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046%3C3077:nsocod%3E2.0.co;2.
Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance? J. Atmos. Sci., 71, 2476–2488, https://doi.org/10.1175/jas-d-14-0007.1.
Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get butterflies. Bull. Amer. Meteor. Soc., 97, 237–243, https://doi.org/10.1175/BAMS-D-15-00070.1.
Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus A: Dyn. Meteor. Oceanogr., 21, 739–759, https://doi.org/10.3402/tellusa.v21i6.10143.
Frogner, I.-L., A. T. Singleton, M. Ø. Køltzow, et al., 2019: Convection-permitting ensembles: Challenges related to their design and use. Quart. J. Roy. Meteor. Soc., 145, 90–106, https://doi.org/10.1002/qj.3525.
Gao, S. T., Y. S. Zhou, and L. K. Ran, 2018: A review on the formation mechanisms and forecast methods for torrential rain in China. Chinese J. Atmos. Sci., 42, 833–846, https://doi.org/10.3878/j.issn.1006-9895.1802.17277. (in Chinese)
Gebhardt, C., S. E. Theis, M. Paulat, et al., 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168–177, https://doi.org/10.1016/j.atmosres.2010.12.008.
Hagelin, S., J. Son, R. Swinbank, et al., 2017: The Met Office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 143, 2846–2861, https://doi.org/10.1002/qj.3135.
Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155–167, https://doi.org/10.1175/1520-0434(1999)014%3C0155:HTFENP%3E2.0.CO;2.
Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, et al., 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112–133, https://doi.org/10.1175/MWR-D-12-00013.1.
Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559–570, https://doi.org/10.1175/1520-0434(2000)015%3C0559:DOTCRP%3E2.0.CO;2.
Hohenegger, C., and C. Schär, 2007a: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 4467–4478, https://doi.org/10.1175/2007jas2143.1.
Hohenegger, C., and C. Schär, 2007b: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 1783–1793, https://doi.org/10.1175/bams-88-11-1783.
Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339, https://doi.org/10.1175/1520-0493(1996)124%3C2322:nblvdi%3E2.0.co;2.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-Class microphysics scheme (WSM6). Asia–Pac. J. Atmos. Sci., 42, 129–151.
Johnson, A., and X. G. Wang, 2016: A study of multiscale initial condition perturbation methods for convection-permitting ensemble forecasts. Mon. Wea. Rev., 144, 2579–2604, https://doi.org/10.1175/mwr-d-16-0056.1.
Johnson, A., X. G. Wang, and M. Xue, et al., 2014: Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation. Mon. Wea. Rev., 142, 1053–1073, https://doi.org/10.1175/mwr-d-13-00204.1.
Kain, J. S., M. C. Coniglio, J. Correia, et al., 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 1213–1225, https://doi.org/10.1175/BAMS-D-11-00264.1.
Klasa, C., M. Arpagaus, A. Walser, et al., 2018: An evaluation of the convection-permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland. Quart. J. Roy. Meteor. Soc., 144, 744–764, https://doi.org/10.1002/qj.3245.
Kong, F. Y., K. K. Droegemeier, and N. L. Hickmon, 2006: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: Comparsion of coarse- and fine-grid experiments. Mon. Wea. Rev., 134, 807–833, https://doi.org/10.1175/MWR3097.1.
Kühnlein, C., C. Keil, G. C. Craig, et al., 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 1552–1562, https://doi.org/10.1002/qj.2238.
Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409–418, https://doi.org/10.1175/1520-0493(1974)102%3C0409:TSOMCF%3E2.0.CO;2.
Li, X. L., M. Charron, L. Spacek, et al., 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Wea. Rev., 136, 443–462, https://doi.org/10.1175/2007mwr2109.1.
Li, X., Z. X. Pu, and Z. Q. Gao, 2021: Combining Monte Carlo and ensemble probabilities in tropical cyclone forecasts near landfall. J. Meteor. Res., 35, 607–622, https://doi.org/10.1007/s13351-021-0128-9.
Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–288, https://doi.org/10.1017/S0022112099004851.
Liu, X., J. Chen, Y. Z. Liu, et al., 2024: An initial perturbation method for the multiscale singular vector in global ensemble prediction. Adv. Atmos. Sci., 41, 545–563, https://doi.org/10.1007/s00376-023-3035-4.
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2.
Luo, Y. L., M. W. Wu, F. M. Ren, et al., 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 8703–8719, https://doi.org/10.1175/JCLI-D-16-0057.1.
Luo, Y. L., R. D. Xia, and J. C. L. Chan, 2020: Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008–2019. J. Meteor. Soc. Japan Ser. II, 98, 19–42, https://doi.org/10.2151/jmsj.2020-002.
Ma, Y. N., J. Chen, Z. Z. Xu, et al., 2023: Evolution characteristics of initial perturbation energy at different scales in convection-permitting ensemble prediction of GRAPES. Chinese J. Atmos. Sci., 47, 1541–1556, https://doi.org/10.3878/j.issn.1006-9895.2202.21242. (in Chinese)
Magnusson, L., J. Nycander, and E. Källén, 2009: Flow-dependent versus flow-independent initial perturbations for ensemble prediction. Tellus A: Dyn. Meteor. Oceanogr., 61, 194–209, https://doi.org/10.1111/j.1600-0870.2008.00385.x.
Mahrt, L., and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222–234, https://doi.org/10.1175/1520-0450(1984)023%3C0222:TIOASO%3E2.0.CO;2.
Melhauser, C., and F. Q. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 3350–3371, https://doi.org/10.1175/JAS-D-11-0315.1.
Min, J. Z., and N. G. Wu, 2020: Advances in atmospheric predictability of heavy rain and severe convection. Chinese J. Atmos. Sci., 44, 1039–1056, https://doi.org/10.3878/j.issn.1006-9895.2003.19186. (in Chinese)
Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated- k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, https://doi.org/10.1029/97jd00237.
Nielsen, E. R., and R. S. Schumacher, 2016: Using convection-allowing ensembles to understand the predictability of an extreme rainfall event. Mon. Wea. Rev., 144, 3651–3676, https://doi.org/10.1175/mwr-d-16-0083.1.
Ono, K., 2020: Extension of the Lanczos algorithm for simultaneous computation of multiple targeted singular vector sets. Quart. J. Roy. Meteor. Soc., 146, 454–467, https://doi.org/10.1002/qj.3686.
Ono, K., M. Kunii, and Y. Honda, 2021: The regional model-based mesoscale ensemble prediction system, MEPS, at the Japan Meteorological Agency. Quart. J. Roy. Meteor. Soc., 147, 465–484, https://doi.org/10.1002/qj.3928.
Palmer, T., 2019: The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Quart. J. Roy. Meteor. Soc., 145, 12–24, https://doi.org/10.1002/qj.3383.
Pan, Y., J. X. Gu, J. J. Yu, et al., 2018: Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteor. Sinica, 76, 755–766, https://doi.org/10.11676/qxxb2018.034. (in Chinese)
Peralta, C., Z. Ben Bouallègue, S. E. Theis, et al., 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res. Atmos., 117, D07108, https://doi.org/10.1029/2011JD016581.
Raynaud, L., and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. Quart. J. Roy. Meteor. Soc., 142, 854–866, https://doi.org/10.1002/qj.2686.
Raynaud, L., and F. Bouttier, 2017: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts. Quart. J. Roy. Meteor. Soc., 143, 3037–3047, https://doi.org/10.1002/qj.3159.
Roberts, B., B. T. Gallo, I. L. Jirak, et al., 2020: What does a convection-allowing ensemble of opportunity buy us in forecasting thunderstorms? Wea. Forecasting, 35, 2293–2316, https://doi.org/10.1175/WAF-D-20-0069.1.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97, https://doi.org/10.1175/2007mwr2123.1.
Salmi, M., C. Marsigli, and M. Dorninger, 2022: Predictability analysis and skillful scale verification of the Lightning Potential Index (LPI) in the COSMO-D2 high resolution ensemble system. Adv. Sci. Res., 19, 29–38, https://doi.org/10.5194/asr-19-29-2022.
Schellander-Gorgas, T., Y. Wang, F. Meier, et al., 2017: On the forecast skill of a convection-permitting ensemble. Geosci. Model Dev., 10, 35–56, https://doi.org/10.5194/gmd-10-35-2017.
Schwartz, C. S., J. S. Kain, S. J. Weiss, et al., 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263–280, https://doi.org/10.1175/2009waf2222267.1.
Schwartz, C. S., M. Wong, G. S. Romine, et al., 2020: Initial conditions for convection-allowing ensembles over the conterminous United States. Mon. Wea. Rev., 148, 2645–2669, https://doi.org/10.1175/MWR-D-19-0401.1.
Schwartz, C. S., J. Poterjoy, G. S. Romine, et al., 2022: Short-term convection-allowing ensemble precipitation forecast sensitivity to resolution of initial condition perturbations and central initial states. Wea. Forecasting, 37, 1259–1286, https://doi.org/10.1175/WAF-D-21-0165.1.
Selz, T., and G. C. Craig, 2015: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Wea. Rev., 143, 813–827, https://doi.org/10.1175/mwr-d-14-00140.1.
Shen, X. S., J. J. Wang, Z. C. Li, et al., 2020: Research and operational development of numerical weather prediction in China. J. Meteor. Res., 34, 675–698, https://doi.org/10.1007/s13351-020-9847-6.
Sun, Y. Q., and F. Q. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 1419–1438, https://doi.org/10.1175/jas-d-15-0142.1.
Vié, B., O. Nuissier, and V. Ducrocq, 2011: Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139, 403–423, https://doi.org/10.1175/2010MWR3487.1.
Wang, J. Z., J. Chen, H. Q. Li, et al., 2023: The roles of chaos seeding and multiple perturbations in convection-permitting ensemble forecasting over southern China. Wea. Forecasting, 38, 1519–1537, https://doi.org/10.1175/WAF-D-22-0177.1.
Wang, J. Z., H. B. Zhang, J. Chen, et al., 2024: Construction of multiscale initial perturbations and the associated impacts on convection-permitting ensemble forecasting. Atmos. Res., 297, 107121, https://doi.org/10.1016/j.atmosres.2023.107121.
Weyn, J. A., and D. R. Durran, 2017: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci., 74, 2191–2210, https://doi.org/10.1175/jas-d-17-0006.1.
Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 65–82, https://doi.org/10.1175/1520-0442(1997)010%3C0065:RHTFAF%3E2.0.CO;2.
Wu, N. G., X. R. Zhuang, J. Z. Min, et al., 2020: Practical and intrinsic predictability of a warm-sector torrential rainfall event in the South China monsoon region. J. Geophys. Res. Atmos., 125, e2019JD031313, https://doi.org/10.1029/2019JD031313.
Yano, J.-I., M. Z. Ziemiański, M. Cullen, et al., 2018: Scientific challenges of convective-scale numerical weather prediction. Bull. Amer. Meteor. Soc., 99, 699–710, https://doi.org/10.1175/BAMS-D-17-0125.1.
Ye, L., Y. Z. Liu, J. Chen, et al., 2020: A study on multi-scale singular vector initial perturbation method for ensemble prediction. Acta Meteor. Sinica, 78, 648–664, https://doi.org/10.11676/qxxb2020.042. (in Chinese)
Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185, https://doi.org/10.1175/1520-0469(2003)060%3C1173:EOMCOM%3E2.0.CO;2.
Zhang, F. Q., N. F. Bei, R. Rotunno, et al., 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 3579–3594, https://doi.org/10.1175/jas4028.1.
Zhang, H. B., J. Chen, X. F. Zhi, et al., 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 1143–1155, https://doi.org/10.1007/s00376-015-4232-6.
Zhang, L., J.-Z. Min, X.-R. Zhuang, et al., 2024: Growth and interactions of multi-source perturbations in convection-allowing ensemble forecasts. J. Trop. Meteor., 30, 118–131, https://doi.org/10.3724/j.1006-8775.2024.012.
Zhang, X. B., 2019: Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX. Mon. Wea. Rev., 147, 291–310, https://doi.org/10.1175/mwr-d-18-0218.1.
Zhang, Y. J., F. Q. Zhang, D. J. Stensrud, et al., 2015: Practical predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma: Sensitivity to synoptic timing and topographical influence. Mon. Wea. Rev., 143, 2973–2997, https://doi.org/10.1175/mwr-d-14-00394.1.
Zhang, Y. J., F. Q. Zhang, D. J. Stensrud, et al., 2016: Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales. Mon. Wea. Rev., 144, 1273–1298, https://doi.org/10.1175/mwr-d-15-0105.1.
Zhang, Y. J., H. Z. Yu, M. R. Zhang, et al., 2022: Uncertainties and error growth in forecasting the record-breaking rainfall in Zhengzhou, Henan on 19–20 July 2021. Sci. China Earth Sci., 65, 1903–1920, https://doi.org/10.1007/s11430-022-9991-4.
Zhu, L. J., J. D. Gong, L. P. Huang, et al., 2007: Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. J. Appl. Meteor. Sci., 28, 38–51, https://doi.org/10.11898/1001-7313.20170104. (in Chinese)
Zhuang, X. R., J. Z. Min, Y. C. Cai, et al., 2016: Convective-scale ensemble prediction experiments under different large-scale forcing with consideration of uncertainties in initial and lateral boundary condition. Acta Meteor. Sinica, 74, 244–258, https://doi.org/10.11676/qxxb2016.019. (in Chinese)
Zhuang, X. R., M. Xue, J. Z. Min, et al., 2021: Error growth dynamics within convection-allowing ensemble forecasts over central U.S. regions for days of active convection. Mon. Wea. Rev., 149, 959–977, https://doi.org/10.1175/MWR-D-20-0329.1.