Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper

Impacts of the Initial Perturbation Scale and Magnitude on Convection-Allowing Ensemble Forecasts over Eastern China

Yanan MA1,2Jing CHEN3,4,5()Jingzhuo WANG3,4,5Fajing CHEN3,4,5Jing WANG6Zhizhen XU3,4,5
Chinese Academy of Meteorological Sciences, China Meteorological Administration (CMA), Beijing 100081
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100081
CMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing 100081
State Key Laboratory of Severe Weather, China Meteorological Administration, Beijing 100081
Key Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing 100081
Tianjin Meteorological Observatory, Tianjin 300074
Show Author Information

Abstract

Given the chaotic nature of the atmosphere and inevitable initial condition errors, constructing effective initial perturbations (IPs) is crucial for the performance of a convection-allowing ensemble prediction system (CAEPS). The IP growth in the CAEPS is scale- and magnitude-dependent, necessitating the investigation of the impacts of IP scales and magnitudes on CAEPS. Five comparative experiments were conducted by using the China Meteorological Administration Mesoscale Numerical Weather Prediction System (CMA-MESO) 3-km model for 13 heavy rainfall events over eastern China: smaller-scale IPs with doubled magnitudes, larger-, meso-, and smaller-scale IPs; and a chaos seeding experiment as a baseline. First, the constructed IPs outperform unphysical chaos seeding in perturbation growth and ensemble performance. Second, the daily variation of smaller-scale perturbations is more sensitive to convective activity because smaller-scale perturbations during forecasts reach saturation faster than meso- and larger-scale perturbations. Additionally, rapid downscaling cascade that saturates the smallest-scale perturbation within 6 h for larger- and meso-scale IPs is stronger in the lower troposphere and near-surface. After 9–12 h, the disturbance development of large-scale IPs is the largest in each layer on various scales. Moreover, thermodynamic perturbations, concentrated in the lower troposphere and near-surface with meso- and smaller-scale components being dominant, are smaller and more responsive to convective activity than kinematic perturbations, which are concentrated on the middle–upper troposphere and predominantly consist of larger- and meso-scale components. Furthermore, the increasing magnitude of smaller-scale IPs enables only their smaller-scale perturbations in the first 9 h to exceed those of larger- and meso-scale IPs. Third, for forecast of upper-air and surface variables, larger-scale IPs warrant a more reliable and skillful CAEPS. Finally, for precipitation, larger-scale IPs perform best for light rain at all forecast times, whereas meso-scale IPs are optimal for moderate and heavy rains at 6-h forecast time. Increasing magnitude of smaller-scale IPs improves the probability forecast skills for heavy rains during the first 3–6 h.

References

 

Ancell, B. C., A. Bogusz, M. J. Lauridsen, et al., 2018: Seeding chaos: The dire consequences of numerical noise in NWP perturbation experiments. Bull. Amer. Meteor. Soc., 99, 615–628, https://doi.org/10.1175/BAMS-D-17-0129.1.

 

Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, https://doi.org/10.1038/nature14956.

 

Bei, N. F., and F. Q. Zhang, 2007: Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quart. J. Roy. Meteor. Soc., 133, 83–99, https://doi.org/10.1002/qj.20.

 

Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270, https://doi.org/10.1002/qj.49712152203.

 

Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1–3, https://doi.org/10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO;2.

 

Buizza, R., 2019: Introduction to the special issue on “25 years of ensemble forecasting”. Quart. J. Roy. Meteor. Soc., 145, 1–11, https://doi.org/10.1002/qj.3370.

 

Clark, A. J., W. A. Gallus Jr., M. Xue, et al., 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 1121–1140, https://doi.org/10.1175/2009WAF2222222.1.

 

Clark, A. J., I. L. Jirak, S. R. Dembek, et al., 2018: The community leveraged unified ensemble (CLUE) in the 2016 NOAA/hazardous weather testbed spring forecasting experiment. Bull. Amer. Meteor. Soc., 99, 1433–1448, https://doi.org/10.1175/BAMS-D-16-0309.1.

 

Clark, P., N. Roberts, H. Lean, et al., 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165–181, https://doi.org/10.1002/met.1538.

 

Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 1812–1829, https://doi.org/10.1175/1520-0493(2002)130%3C1812:SDOTDA%3E2.0.CO;2.

 

Ding, Y. H., 2019: The major advances and development process of the theory of heavy rainfalls in China. Torrential Rain Disaster, 38, 395–406. (in Chinese)

 

Duc, L., K. Saito, and H. Seko, 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus A: Dyn. Meteor. Oceanogr., 65, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

 

Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046%3C3077:nsocod%3E2.0.co;2.

 

Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance? J. Atmos. Sci., 71, 2476–2488, https://doi.org/10.1175/jas-d-14-0007.1.

 

Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get butterflies. Bull. Amer. Meteor. Soc., 97, 237–243, https://doi.org/10.1175/BAMS-D-15-00070.1.

 
Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. Chapman and Hall/CRC, New York, 456 pp, https://doi.org/10.1201/9780429246593.
 

Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus A: Dyn. Meteor. Oceanogr., 21, 739–759, https://doi.org/10.3402/tellusa.v21i6.10143.

 

Frogner, I.-L., A. T. Singleton, M. Ø. Køltzow, et al., 2019: Convection-permitting ensembles: Challenges related to their design and use. Quart. J. Roy. Meteor. Soc., 145, 90–106, https://doi.org/10.1002/qj.3525.

 

Gao, S. T., Y. S. Zhou, and L. K. Ran, 2018: A review on the formation mechanisms and forecast methods for torrential rain in China. Chinese J. Atmos. Sci., 42, 833–846, https://doi.org/10.3878/j.issn.1006-9895.1802.17277. (in Chinese)

 

Gebhardt, C., S. E. Theis, M. Paulat, et al., 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168–177, https://doi.org/10.1016/j.atmosres.2010.12.008.

 

Hagelin, S., J. Son, R. Swinbank, et al., 2017: The Met Office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 143, 2846–2861, https://doi.org/10.1002/qj.3135.

 

Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155–167, https://doi.org/10.1175/1520-0434(1999)014%3C0155:HTFENP%3E2.0.CO;2.

 

Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, et al., 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112–133, https://doi.org/10.1175/MWR-D-12-00013.1.

 

Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559–570, https://doi.org/10.1175/1520-0434(2000)015%3C0559:DOTCRP%3E2.0.CO;2.

 

Hohenegger, C., and C. Schär, 2007a: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 4467–4478, https://doi.org/10.1175/2007jas2143.1.

 

Hohenegger, C., and C. Schär, 2007b: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 1783–1793, https://doi.org/10.1175/bams-88-11-1783.

 

Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339, https://doi.org/10.1175/1520-0493(1996)124%3C2322:nblvdi%3E2.0.co;2.

 

Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-Class microphysics scheme (WSM6). Asia–Pac. J. Atmos. Sci., 42, 129–151.

 

Johnson, A., and X. G. Wang, 2016: A study of multiscale initial condition perturbation methods for convection-permitting ensemble forecasts. Mon. Wea. Rev., 144, 2579–2604, https://doi.org/10.1175/mwr-d-16-0056.1.

 

Johnson, A., X. G. Wang, and M. Xue, et al., 2014: Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation. Mon. Wea. Rev., 142, 1053–1073, https://doi.org/10.1175/mwr-d-13-00204.1.

 
Jolliffe, I. T., and D. B. Stephenson, 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd ed. John Wiley and Sons, Chichester, 141–166, https://doi.org/10.1002/9781119960003.
 

Kain, J. S., M. C. Coniglio, J. Correia, et al., 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 1213–1225, https://doi.org/10.1175/BAMS-D-11-00264.1.

 

Klasa, C., M. Arpagaus, A. Walser, et al., 2018: An evaluation of the convection-permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland. Quart. J. Roy. Meteor. Soc., 144, 744–764, https://doi.org/10.1002/qj.3245.

 

Kong, F. Y., K. K. Droegemeier, and N. L. Hickmon, 2006: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: Comparsion of coarse- and fine-grid experiments. Mon. Wea. Rev., 134, 807–833, https://doi.org/10.1175/MWR3097.1.

 

Kühnlein, C., C. Keil, G. C. Craig, et al., 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 1552–1562, https://doi.org/10.1002/qj.2238.

 

Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409–418, https://doi.org/10.1175/1520-0493(1974)102%3C0409:TSOMCF%3E2.0.CO;2.

 

Li, X. L., M. Charron, L. Spacek, et al., 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Wea. Rev., 136, 443–462, https://doi.org/10.1175/2007mwr2109.1.

 

Li, X., Z. X. Pu, and Z. Q. Gao, 2021: Combining Monte Carlo and ensemble probabilities in tropical cyclone forecasts near landfall. J. Meteor. Res., 35, 607–622, https://doi.org/10.1007/s13351-021-0128-9.

 

Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–288, https://doi.org/10.1017/S0022112099004851.

 

Liu, X., J. Chen, Y. Z. Liu, et al., 2024: An initial perturbation method for the multiscale singular vector in global ensemble prediction. Adv. Atmos. Sci., 41, 545–563, https://doi.org/10.1007/s00376-023-3035-4.

 

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2.

 

Luo, Y. L., M. W. Wu, F. M. Ren, et al., 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 8703–8719, https://doi.org/10.1175/JCLI-D-16-0057.1.

 

Luo, Y. L., R. D. Xia, and J. C. L. Chan, 2020: Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008–2019. J. Meteor. Soc. Japan Ser. II, 98, 19–42, https://doi.org/10.2151/jmsj.2020-002.

 
Ma, Y. N., 2022: Research on multiscale evolution characteristics and method of initial perturbation in convection-permitting ensemble prediction. Master dissertation, Chinese Academy of Meteorological Sciences, Beijing, China, 60–83, https://doi.org/10.27631/d.cnki.gzqky.2022.000008. (in Chinese)
 

Ma, Y. N., J. Chen, Z. Z. Xu, et al., 2023: Evolution characteristics of initial perturbation energy at different scales in convection-permitting ensemble prediction of GRAPES. Chinese J. Atmos. Sci., 47, 1541–1556, https://doi.org/10.3878/j.issn.1006-9895.2202.21242. (in Chinese)

 

Magnusson, L., J. Nycander, and E. Källén, 2009: Flow-dependent versus flow-independent initial perturbations for ensemble prediction. Tellus A: Dyn. Meteor. Oceanogr., 61, 194–209, https://doi.org/10.1111/j.1600-0870.2008.00385.x.

 

Mahrt, L., and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222–234, https://doi.org/10.1175/1520-0450(1984)023%3C0222:TIOASO%3E2.0.CO;2.

 

Melhauser, C., and F. Q. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 3350–3371, https://doi.org/10.1175/JAS-D-11-0315.1.

 

Min, J. Z., and N. G. Wu, 2020: Advances in atmospheric predictability of heavy rain and severe convection. Chinese J. Atmos. Sci., 44, 1039–1056, https://doi.org/10.3878/j.issn.1006-9895.2003.19186. (in Chinese)

 

Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated- k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, https://doi.org/10.1029/97jd00237.

 

Nielsen, E. R., and R. S. Schumacher, 2016: Using convection-allowing ensembles to understand the predictability of an extreme rainfall event. Mon. Wea. Rev., 144, 3651–3676, https://doi.org/10.1175/mwr-d-16-0083.1.

 

Ono, K., 2020: Extension of the Lanczos algorithm for simultaneous computation of multiple targeted singular vector sets. Quart. J. Roy. Meteor. Soc., 146, 454–467, https://doi.org/10.1002/qj.3686.

 

Ono, K., M. Kunii, and Y. Honda, 2021: The regional model-based mesoscale ensemble prediction system, MEPS, at the Japan Meteorological Agency. Quart. J. Roy. Meteor. Soc., 147, 465–484, https://doi.org/10.1002/qj.3928.

 

Palmer, T., 2019: The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Quart. J. Roy. Meteor. Soc., 145, 12–24, https://doi.org/10.1002/qj.3383.

 

Pan, Y., J. X. Gu, J. J. Yu, et al., 2018: Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteor. Sinica, 76, 755–766, https://doi.org/10.11676/qxxb2018.034. (in Chinese)

 

Peralta, C., Z. Ben Bouallègue, S. E. Theis, et al., 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res. Atmos., 117, D07108, https://doi.org/10.1029/2011JD016581.

 

Raynaud, L., and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. Quart. J. Roy. Meteor. Soc., 142, 854–866, https://doi.org/10.1002/qj.2686.

 

Raynaud, L., and F. Bouttier, 2017: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts. Quart. J. Roy. Meteor. Soc., 143, 3037–3047, https://doi.org/10.1002/qj.3159.

 

Roberts, B., B. T. Gallo, I. L. Jirak, et al., 2020: What does a convection-allowing ensemble of opportunity buy us in forecasting thunderstorms? Wea. Forecasting, 35, 2293–2316, https://doi.org/10.1175/WAF-D-20-0069.1.

 

Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97, https://doi.org/10.1175/2007mwr2123.1.

 

Salmi, M., C. Marsigli, and M. Dorninger, 2022: Predictability analysis and skillful scale verification of the Lightning Potential Index (LPI) in the COSMO-D2 high resolution ensemble system. Adv. Sci. Res., 19, 29–38, https://doi.org/10.5194/asr-19-29-2022.

 

Schellander-Gorgas, T., Y. Wang, F. Meier, et al., 2017: On the forecast skill of a convection-permitting ensemble. Geosci. Model Dev., 10, 35–56, https://doi.org/10.5194/gmd-10-35-2017.

 

Schwartz, C. S., J. S. Kain, S. J. Weiss, et al., 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263–280, https://doi.org/10.1175/2009waf2222267.1.

 

Schwartz, C. S., M. Wong, G. S. Romine, et al., 2020: Initial conditions for convection-allowing ensembles over the conterminous United States. Mon. Wea. Rev., 148, 2645–2669, https://doi.org/10.1175/MWR-D-19-0401.1.

 

Schwartz, C. S., J. Poterjoy, G. S. Romine, et al., 2022: Short-term convection-allowing ensemble precipitation forecast sensitivity to resolution of initial condition perturbations and central initial states. Wea. Forecasting, 37, 1259–1286, https://doi.org/10.1175/WAF-D-21-0165.1.

 

Selz, T., and G. C. Craig, 2015: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Wea. Rev., 143, 813–827, https://doi.org/10.1175/mwr-d-14-00140.1.

 

Shen, X. S., J. J. Wang, Z. C. Li, et al., 2020: Research and operational development of numerical weather prediction in China. J. Meteor. Res., 34, 675–698, https://doi.org/10.1007/s13351-020-9847-6.

 

Sun, Y. Q., and F. Q. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 1419–1438, https://doi.org/10.1175/jas-d-15-0142.1.

 
Talagrand, O., R. Vautard, and B. Strauss, 1997: Evaluation of probabilistic prediction systems. Proceedings of ECMWF Workshop on Predictability, Reading UK, 20–22 October, ECMWF, 1–25.
 

Vié, B., O. Nuissier, and V. Ducrocq, 2011: Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139, 403–423, https://doi.org/10.1175/2010MWR3487.1.

 

Wang, J. Z., J. Chen, H. Q. Li, et al., 2023: The roles of chaos seeding and multiple perturbations in convection-permitting ensemble forecasting over southern China. Wea. Forecasting, 38, 1519–1537, https://doi.org/10.1175/WAF-D-22-0177.1.

 

Wang, J. Z., H. B. Zhang, J. Chen, et al., 2024: Construction of multiscale initial perturbations and the associated impacts on convection-permitting ensemble forecasting. Atmos. Res., 297, 107121, https://doi.org/10.1016/j.atmosres.2023.107121.

 

Weyn, J. A., and D. R. Durran, 2017: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci., 74, 2191–2210, https://doi.org/10.1175/jas-d-17-0006.1.

 

Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 65–82, https://doi.org/10.1175/1520-0442(1997)010%3C0065:RHTFAF%3E2.0.CO;2.

 

Wu, N. G., X. R. Zhuang, J. Z. Min, et al., 2020: Practical and intrinsic predictability of a warm-sector torrential rainfall event in the South China monsoon region. J. Geophys. Res. Atmos., 125, e2019JD031313, https://doi.org/10.1029/2019JD031313.

 

Yano, J.-I., M. Z. Ziemiański, M. Cullen, et al., 2018: Scientific challenges of convective-scale numerical weather prediction. Bull. Amer. Meteor. Soc., 99, 699–710, https://doi.org/10.1175/BAMS-D-17-0125.1.

 

Ye, L., Y. Z. Liu, J. Chen, et al., 2020: A study on multi-scale singular vector initial perturbation method for ensemble prediction. Acta Meteor. Sinica, 78, 648–664, https://doi.org/10.11676/qxxb2020.042. (in Chinese)

 

Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185, https://doi.org/10.1175/1520-0469(2003)060%3C1173:EOMCOM%3E2.0.CO;2.

 

Zhang, F. Q., N. F. Bei, R. Rotunno, et al., 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 3579–3594, https://doi.org/10.1175/jas4028.1.

 

Zhang, H. B., J. Chen, X. F. Zhi, et al., 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 1143–1155, https://doi.org/10.1007/s00376-015-4232-6.

 

Zhang, L., J.-Z. Min, X.-R. Zhuang, et al., 2024: Growth and interactions of multi-source perturbations in convection-allowing ensemble forecasts. J. Trop. Meteor., 30, 118–131, https://doi.org/10.3724/j.1006-8775.2024.012.

 

Zhang, X. B., 2019: Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX. Mon. Wea. Rev., 147, 291–310, https://doi.org/10.1175/mwr-d-18-0218.1.

 

Zhang, Y. J., F. Q. Zhang, D. J. Stensrud, et al., 2015: Practical predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma: Sensitivity to synoptic timing and topographical influence. Mon. Wea. Rev., 143, 2973–2997, https://doi.org/10.1175/mwr-d-14-00394.1.

 

Zhang, Y. J., F. Q. Zhang, D. J. Stensrud, et al., 2016: Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales. Mon. Wea. Rev., 144, 1273–1298, https://doi.org/10.1175/mwr-d-15-0105.1.

 

Zhang, Y. J., H. Z. Yu, M. R. Zhang, et al., 2022: Uncertainties and error growth in forecasting the record-breaking rainfall in Zhengzhou, Henan on 19–20 July 2021. Sci. China Earth Sci., 65, 1903–1920, https://doi.org/10.1007/s11430-022-9991-4.

 

Zhu, L. J., J. D. Gong, L. P. Huang, et al., 2007: Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. J. Appl. Meteor. Sci., 28, 38–51, https://doi.org/10.11898/1001-7313.20170104. (in Chinese)

 

Zhuang, X. R., J. Z. Min, Y. C. Cai, et al., 2016: Convective-scale ensemble prediction experiments under different large-scale forcing with consideration of uncertainties in initial and lateral boundary condition. Acta Meteor. Sinica, 74, 244–258, https://doi.org/10.11676/qxxb2016.019. (in Chinese)

 

Zhuang, X. R., M. Xue, J. Z. Min, et al., 2021: Error growth dynamics within convection-allowing ensemble forecasts over central U.S. regions for days of active convection. Mon. Wea. Rev., 149, 959–977, https://doi.org/10.1175/MWR-D-20-0329.1.

Journal of Meteorological Research
Pages 132-153
Cite this article:
MA Y, CHEN J, WANG J, et al. Impacts of the Initial Perturbation Scale and Magnitude on Convection-Allowing Ensemble Forecasts over Eastern China. Journal of Meteorological Research, 2025, 39(1): 132-153. https://doi.org/10.1007/s13351-025-4172-8
Metrics & Citations  
Article History
Copyright
Return