Abstract
We report the synthesis of Co2+ substituted Mg–Cu–Zn ferrite via citrate gel combustion process and thereby its structural, transport, and magnetic properties for the use in electromagnetic energy absorption application. The polycrystalline ferrite system is investigated by interplay of stoichiometric composition with Mg0.25–xCoxCu0.25Zn0.5Fe2O4 (0 ≤ x ≤ 0.25). Structural investigations using X-ray diffraction (XRD) and selected area electron diffraction (SAED) reveal the formation of spinel structure with linear growth of lattice constant due to Co2+ substitution. The microstructural analysis (TEM and SEM) depicts the dense microstructure with the average grain size of 0.42– 1.25 µm. The elemental analysis (EDS) confirms the elemental composition of the as-prepared ferrite with respect to the initial concentrations of the synthetic composition used. The observed variations in initial permeability (