Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Environmental barrier coating (EBC) materials that are resistant against molten calcia-magnesia-aluminosilicate (CMAS) corrosion are urgently required. Herein, multicomponent rare-earth (RE) disilicate ((Yb0.2Y0.2Lu0.2Sc0.2Gd0.2)2Si2O7, (5RE)2Si2O7) was investigated with regard to its CMAS interaction behavior at 1400 ℃. Compared with the individual RE disilicates, the (5RE)2Si2O7 material exhibited improved resistance against CMAS attack. The dominant process involved in the interaction of (5RE)2Si2O7 with CMAS was reaction-recrystallization. A dense and continuous reaction layer protected the substrate from rapid corrosion at high temperatures. The results demonstrated that multicomponent strategy of RE species in disilicate can provide a new perspective in the development of promising EBC materials with improved corrosion resistance.
1757
Views
342
Downloads
69
Crossref
73
Web of Science
75
Scopus
11
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.