Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-entropy oxides (HEOs) and medium-entropy oxides (MEOs) are new types of single-phase solid solution materials. MEOs have rarely been reported as positive electrode material for sodium-ion batteries (SIBs). In this study, we first proposed the concept of the application of MEOs in SIBs. P2-type 3-cation oxide Na2/3Ni1/3Mn1/3Fe1/3O2 (NaNMF) and 4-cation oxide Na2/3Ni1/3Mn1/3Fe1/3-xAlxO2 (NaNMFA) were prepared using the solid-state method, rather than the doping technology. In addition, the importance of the concept of entropy stabilization in material performance and battery cycling was demonstrated by testing 3-cation (NaNMF) and 4-cation (NaNMFA) oxides in the same system. Thus, NaNMFA can provide a reversible capacity of about 125.6 mAh·g-1 in the voltage range of 2-4.2 V, and has enhanced cycle stability. The capacity and decay law of the MEO batteries indicate that the configurational entropy (1.28 R (NaNMFA) > 1.10 R (NaNMF)) of the cationic system, is the main factor affecting the structural and cycle stability of the electrode material. This work emphasizes that the rational design of MEOs with novel structures and different electrochemically active elements may be the strategy for exploring high-performance SIB cathode materials in next-generation energy storage devices.
1581
Views
144
Downloads
50
Crossref
46
Web of Science
48
Scopus
7
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.