Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Three-dimensional (3D) grid porous electrodes introduce vertically aligned pores as a convenient path for the transport of lithium-ions (Li-ions), thereby reducing the total transport distance of Li-ions and improving the reaction kinetics. Although there have been other studies focusing on 3D electrodes fabricated by 3D printing, there still exists a gap between electrode design and their electrochemical performance. In this study, we try to bridge this gap through a comprehensive investigation on the effects of various electrode parameters including the electrode porosity, active material particle diameter, electrode electronic conductivity, electrode thickness, line width, and pore size on the electrochemical performance. Both numerical simulations and experimental investigations are conducted to systematically examine these effects. 3D grid porous Li4Ti5O12 (LTO) thick electrodes are fabricated by low temperature direct writing technology and the electrodes with the thickness of 1085 μm and areal mass loading of 39.44 mg·cm-2 are obtained. The electrodes display impressive electrochemical performance with the areal capacity of 5.88 mAh·cm-2@1.0 C, areal energy density of 28.95 J·cm-2@1.0 C, and areal power density of 8.04 mW·cm-2@1.0 C. This study can provide design guidelines for obtaining 3D grid porous electrodes with superior electrochemical performance.
1491
Views
259
Downloads
67
Crossref
61
Web of Science
65
Scopus
3
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.