Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
One-dimensional nanofibers can be transformed into hollow structures with larger specific surface area, which contributes to the enhancement of gas adsorption. We firstly fabricated Cu-doped In2O3 (Cu-In2O3) hollow nanofibers by electrospinning and calcination for detecting H2S. The experimental results show that the Cu doping concentration besides the operating temperature, gas concentration, and relative humidity can greatly affect the H2S sensing performance of the In2O3-based sensors. In particular, the responses of 6%Cu-In2O3 hollow nanofibers are 350.7 and 4201.5 to 50 and 100 ppm H2S at 250 ℃, which are over 20 and 140 times higher than those of pristine In2O3 hollow nanofibers, respectively. Moreover, the corresponding sensor exhibits excellent selectivity and good reproducibility towards H2S, and the response of 6%Cu-In2O3 is still 1.5 to 1 ppm H2S. Finally, the gas sensing mechanism of Cu-In2O3 hollow nanofibers is thoroughly discussed, along with the assistance of first-principles calculations. Both the formation of hollow structure and Cu doping contribute to provide more active sites, and meanwhile a little CuO can form p-n heterojunctions with In2O3 and react with H2S, resulting in significant improvement of gas sensing performance. The Cu-In2O3 hollow nanofibers can be tailored for practical application to selectively detect H2S at lower concentrations.
1531
Views
181
Downloads
101
Crossref
94
Web of Science
100
Scopus
9
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are includ ed in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.