Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A recent discovery of high-performance Mg3Sb2 has ignited tremendous research activities in searching for novel Zintl-phase compounds as promising thermoelectric materials. Herein, a series of planar Zintl-phase XCuSb (X = Ca, Sr, Ba) thermoelectric materials are developed by vacuum induction melting. All these compounds exhibit high carrier mobilities and intrinsic low lattice thermal conductivities (below 1 W·m−1·K−1 at 1010 K), resulting in peak p-type zT values of 0.14, 0.30, and 0.48 for CaCuSb, SrCuSb, and BaCuSb, respectively. By using BaCuSb as a prototypical example, the origins of low lattice thermal conductivity are attributed to the strong interlayer vibrational anharmonicity of Cu–Sb honeycomb sublattice. Moreover, the first-principles calculations reveal that n-type BaCuSb can achieve superior thermoelectric performance with the peak zT beyond 1.1 because of larger conducting band degeneracy. This work sheds light on the high-temperature thermoelectric potential of planar Zintl compounds, thereby stimulating intense interest in the investigation of this unexplored material family for higher zT values.
1228
Views
81
Downloads
17
Crossref
17
Web of Science
17
Scopus
1
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.