Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a type of titanate, the pseudobrookite (MTi2O5/M2TiO5) exhibits a low thermal expansion coefficient and thermal conductivity, as well as excellent dielectric and solar spectrum absorption properties. However, the pseudobrookite is unstable and prone to decomposing below 1200 ℃, which limits the practical application of the pseudobrookite. In this paper, the high-entropy pseudobrookite ceramic is synthesized for the first time. The pure high-entropy (Mg,Co,Ni,Zn)Ti2O5 with the pseudobrookite structure and the biphasic high-entropy ceramic composed of the high-entropy pseudobrookite (Cr,Mn,Fe,Al,Ga)2TiO5 and the high-entropy spinel (Cr,Mn,Fe,Al,Ga,Ti)3O4 are successfully prepared by the in-situ solid-phase reaction method. The comparison between the theoretical crystal structure of the pseudobrookite and the aberration-corrected scanning transmission electron microscopy (AC-STEM) images of high-entropy (Mg,Co,Ni,Zn)Ti2O5 shows that the metal ions (M and Ti ions) are disorderly distributed at the A site and the B site in high-entropy (Mg,Co,Ni,Zn)Ti2O5, leading to an unprecedentedly high configurational entropy of high-entropy (Mg,Co,Ni,Zn)Ti2O5. The bulk high-entropy (Mg,Co,Ni,Zn)Ti2O5 ceramics exhibit a low thermal expansion coefficient of 6.35×10−6 K−1 in the temperature range of 25–1400 ℃ and thermal conductivity of 1.840 W·m−1·K−1 at room temperature, as well as the excellent thermal stability at 200, 600, and 1400 ℃. Owing to these outstanding properties, high-entropy (Mg,Co,Ni,Zn)Ti2O5 is expected to be the promising candidate for high-temperature thermal insulation. This work has further extended the family of different crystal structures of high-entropy ceramics reported to date.
1338
Views
197
Downloads
12
Crossref
12
Web of Science
13
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.