AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (31.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Nanotribological studies using nanoparticle manipulation: Principles and application to structural lubricity

Dirk DIETZEL1( )Udo D. SCHWARZ2André SCHIRMEISEN1
Institute of Applied Physics (IAP), Justus-Liebig-Universität Giessen, Germany
Departments of Mechanical Engineering & Materials Science and Chemical & Environmental Engineering and Center for Research on Structures and Phenomena (CRISP), Yale University, New Haven, CT, USA
Show Author Information

Abstract

The term "structural lubricity" denotes a fundamental concept where the friction between two atomically flat surfaces is reduced due to lattice mismatch at the interface. Under favorable circumstances, its effect may cause a contact to experience ultra-low friction, which is why it is also referred to as "superlubricity". While the basic principle is intriguingly simple, the experimental analysis of structural lubricity has been challenging. One of the main reasons for this predicament is that the tool most frequently used in nanotribology, the friction force microscope, is not well suited to analyse the friction of extended nanocontacts. To overcome this deficiency, substantial efforts have been directed in recent years towards establishing nanoparticle manipulation techniques, where the friction of nanoparticles sliding on a substrate is measured, as an alternative approach to nanotribological research. By choosing appropriate nanoparticles and substrates, interfaces exhibiting the characteristics needed for the occurrence of structural lubricity can be created. As a consequence, nanoparticle manipulation experiments such as in this review represent a unique opportunity to study the physical conditions and processes necessary to establish structural lubricity, thereby opening a path to exploit this effect in technological applications.

References

[1]
H G Craighead. Nanoelectromechanical systems. Science 290: 1532-1535 (2000)
[2]
K L Ekinci, M L Roukes. Nanoelectromechanical systems. Review of Scientific Instruments 76: 061101 (2005)
[3]
Handbook of Micro/Nanotribology. B Bhushan, Ed. CRC Press LLC, 1999.
[4]
B Bhushan, J N Israelachvili, U Landman. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature 374: 607-616 (1995)
[5]
M Mate, G M McClelland,R Erlandsson, S Chiang. Atomic-scale friction of a Tungsten tip on a graphite surface. Phys Rev Lett 59: 1942-1946 (1987)
[6]
G Binnig, C F Quate, C Gerber. Atomic force microscope. Phys Rev Lett 56: 930-933 (1986)
[7]
R W Carpick, M Salmeron. Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem Rev 97: 1163-1194 (1997)
[8]
Fundamentals of Friciton and Wear on the Nanoscale. E Gnecco, E Meyer, Ed. Berlin: Springer, 2007.
[9]
F P Bowden, D Tabor. Friction and Lubrication of Solids. Oxford(UK): Oxford University Press, 1950.
[10]
H Holscher, A Schirmeisen, U. D Schwarz. Principles of atomic friction: from sticking atoms to superlubric sliding. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366: 1383-1404 (2008)
[11]
R W Carpick, N Agraït, D F Ogletree, M Salmeron. Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J Vac Sci Technol B 14: 1289 (1996)
[12]
M A Lantz, S J O’Shea, M E Welland, K L Johnson. Atomic-force-microscope study of contact area and friction on NbSe2. Phys Rev B 55: 10776 (1997)
[13]
U D Schwarz, O Zwörner, P Köster, R Wiesendanger. Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Phys Rev B 56: 6987 (1997)
[14]
U D Schwarz, O Zwörner, P Köster, R Wiesendanger. Quantitative analysis of the frictional properties of solid materials at low loads. II. Mica and germanium sulfide. Phys Rev B 56: 6997 (1997).
[15]
E Meyer, R Lüthi, L Howald, M Bammerlin, M Guggisberg, H-J Güntherodt. Site-specific friction force spectroscopy. J Vac Sci Technol B 14: 1285 (1996)
[16]
M Enachescu, R J A van den Oetelaar, R W Carpick, D F Ogletree, C F J Flipse, M Salmeron. Atomic force microscopy study of an ideally hard contact: The diamond (111)/tungsten carbide interface. Phys Rev Lett 81: 1877 (1998)
[17]
E Gnecco, R Bennewitz, T Gyalog, Ch Loppacher, M Bammerlin, E Meyer, H-J Güntherodt. Velocity dependence of atomic friction. Phys Rev Lett 84: 1172- 1175 (2000)
[18]
M Evstigneev, A Schirmeisen, L Jansen, H Fuchs, P Reimann. Force dependence of transition rates in atomic friction. Phys Rev Lett 97: 240601 (2006)
[19]
O Zwörner, H Hölscher, U D Schwarz, R Wiesendanger. The velocity dependence of frictional forces in point-contact friction. Appl Phys A 66: S263-267 (1998)
[20]
L Jansen, H Hölscher, H Fuchs, A Schirmeisen. Temperature dependence of atomic-scale stick-slip friction. Phys Rev Lett 104: 256101 (2010)
[21]
A Schirmeisen, L Jansen, H Hölscher, H Fuchs. Temperature dependence of point contact friction on silicon. Appl Phys Lett 88: 123108 (2006)
[22]
X Zhao, M Hamilton, W G Sawyer, S S Perry. Thermally activated friction. Trib Lett 27: 113-117 (2007)
[23]
I Barel, M Urbakh, L Jansen, A Schirmeisen. Multibond dynamics of nanoscale friction: The role of temperature. Phys Rev Lett 104: 066104 (2010)
[24]
R M Overney, H Takano, M Fujihira, W Paulus, H Ringsdorf. Ansiotropy in friction and molecular stick-slip motion. Phys Rev Lett 72: 3546 (1994)
[25]
H Bluhm, U D Schwarz, K P Meyer, R Wiesendanger. Anisotropy of sliding friction on the triglycine sulfate (010) surface. Appl Phys A 61: 525 (1995)
[26]
H Shindo, K Shitagami, T Sugai, S-I Kondo. Evidence of the contribution of molecular orientations on the surface force friction of alkaline earth sulfate crystals. Phys Chem Chem Phys 1: 1597-1600 (1995)
[27]
J Y Park, D F Ogletree, M Salmeron, R A Ribeiro, P C Canfield, C J Jenks, P A Thiel. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309: 1354-1356 (2005)
[28]
E Meyer, R Overney, D Brodbeck, L Howald, R Lüthi, J Frommer, H-J Güntherodt. Friction and wear of Langmuir-Blodgett films observed by friction force microscopy. Phys Rev Lett 69: 1777 (1992)
[29]
R M Overney, E Meyer, J Frommer, D Brodbeck, R Lüthi, L Howald, H-J Güntherodt, M Fujihira, H Takano, Y Gotoh. Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature 359: 133 (1992)
[30]
U D Schwarz, W Allers, G Gensterblum, R Wiesendanger. Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys Rev B 52: 14976 (1995)
[31]
M Dienwiebel, G S Verhoeven, N Pradeep, J W M Frenken, J A Heimberg, H W Zandbergen. Superlubricity of graphite. Phys Rev Lett 92: 126101 (2004)
[32]
A S de Wijn. (In)commensurability, scaling, and multiplicity of friction in nanocrystals and application to gold nanocrystals on graphite. Phys Rev B 86: 085429 (2012)
[33]
D Dietzel, M Feldmann, H Fuchs, U D Schwarz, A Schirmeisen. Scaling laws of structural lubricity. Phys Rev Lett 111: 235502 (2013)
[34]
J N Israelachvili, D Tabor. Shear properties of molecular films. Wear 24: 386-390 (1973)
[35]
B J Briscoe, D C B Evans. The shear properties of Langmuir-Blodgett layers. Proc Roy Soc Lond A 380: 389-407 (1982)
[36]
J Krim, A Widom. Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity. Phys Rev B 38: 12184 (1988)
[37]
J Krim, D H Solina, R Chiarello. Nanotribology of a Kr monolayer: A quartz-crystal microbalance study of atomic-scale friction. Phys Rev Lett 66: 181-184 (1991)
[38]
T Coffey, J Krim. Impact of substrate corrugation on the sliding friction levels of adsorbed films. Phys Rev Lett 95: 076101 (2005)
[39]
R Lüthi, E Meyer, H Haefke, L Howald, W Gutmannsbauer, H-J Güntherodt. Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energies of C60. Science 266: 1979-1981 (1994)
[40]
P E Sheehan, C M Lieber. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 271: 1158-1161 (1996)
[41]
M R Falvo, J Steele, II R M Taylor, R Superfine. Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG. Phys Rev B 62: R10665 (2000)
[42]
A Rao, E Gnecco, D Marchetto, K Mougin, M Schönenberger, S Valeri, E Meyer. The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology 20: 115706 (2009)
[43]
B Polyakov, S Vlassov, L M Dorogin, J Butikova, M Antsov, S Oras, R Lohmus, I Kink. Manipulation of nanoparticles of different shapes inside a scanning electron microscope. Beilstein Journal of Nanotechnology 5: 133-140 (2014)
[44]
K Mougin, E Gnecco, A Rao, M T Cuberes, S Jayaraman, E W McFarland, H Haidara, E Meyer. Manipulation of gold nanoparticles: Influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir 24: 1577-1581 (2008)
[45]
D Dietzel, C Ritter, T Mönninghoff, H Fuchs, A Schirmeisen, U D Schwarz. Frictional duality observed during nanoparticle sliding. Phys Rev Lett 101: 125505 (2008)
[46]
D Dietzel, T Mönninghoff, C Herding, M Feldmann, H Fuchs, B Stegemann, C Ritter, U D Schwarz, A Schirmeisen. Frictional duality of metallic nanoparticles: Influence of particle morphology, orientation, and air exposure. Phys Rev B 82: 035401 (2010)
[47]
J Brndiar, R Turansky, D Dietzel, A Schirmeisen, I Stich. Understanding frictional duality and bi-duality: Sb-nanoparticles on HOPG. Nanotechnology 22: 085704 (2011)
[48]
C Ritter, M Heyde, B Stegemann, K Rademann, U D Schwarz. Contact-area dependence of frictional forces: Moving adsorbed antimony nanoparticles. Phys Rev B 71: 085405 (2005)
[49]
G Paolicelli, M Rovatti, A Vanossi, S Valeri. Controlling single cluster dynamics at the nanoscale. Appl Phys Lett 95: 143121 (2009)
[50]
B Polyakov, L M Dorogin, S Vlassov, I Kink, A E Romanov, R Lohmus. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Micron 43: 1140-1146 (2012)
[51]
D Dietzel, M Feldmann, H Fuchs, U D Schwarz, A Schirmeisen. Transition from static to kinetic friction of metallic nanoparticles. Appl Phys Lett 95: 053104 (2009)
[52]
M Feldmann, D Dietzel, U D Schwarz, H Fuchs, A Schirmeisen. Influence of contact aging on nanoparticle friction kinetics. Phys Rev Lett 112: 155503 (2014)
[53]
B Stegemann, C Ritter,B Kaiser, K Rademann. Crystallization of antimony nanoparticles: Pattern formation and fractal growth. J Phys Chem B 108: 14292-14297 (2004)
[54]
B Kaiser, B Stegemann, H Kaukel, K Rademann. Instabilities and pattern formation during the self-organized growth of nanoparticles on graphite. Surf Sci 496: L18-L22 (2002)
[55]
C Ritter, M Z Baykara, B Stegemann, M Heyde, K Rademann, J Schroers, U D Schwarz. Nonuniform friction-area dependency for antimony oxide surfaces sliding on graphite. Phys Rev B 88: 045422 (2013)
[56]
E Tranvouez, A Orieux, C. H. Boer-Duchemin, E Devillers, V Huc, G Comtet, G Dujardin. Manipulation of cadmium selenide nanorods with an atomic force microscope. Nanotechnology 20: 165304 (2009)
[57]
Ch Bombis, F Ample, J Mielke, M Mannsberger, C J Villagmez, Ch Roth, C Joachim, L Grill. Mechanical behavior of nanocrystalline NaCl islands on Cu(111). Phys Rev Lett 104: 185502 (2010)
[58]
X Feng, S Kwon, J Y Park, M Salmeron. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7: 1718-1724 (2013)
[59]
Q Zhong, D Inniss, K Kjoller, V Elings. Fractured polymer/ silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290: L688 (1993)
[60]
T R Albrecht, P Grütter, D Horne, D Rugar. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69: 668 (1991)
[61]
C Ritter, M Heyde, U D Schwarz, K Rademann. Controlled translational manipulation of small latex spheres by dynamic force microscopy. Langmuir 18: 7798-7803 (2002)
[62]
B Anczykowski, B Gotsmann, H Fuchs, J P Cleveland, V B Elings. How to measure energy dissipation in dynamic mode atomic force microscopy. Appl Surf Sci 140: 376-382 (1999)
[63]
D A Aruliah, M Müser, U D Schwarz. Calculations of the threshold force and threshold power to move adsorbed nanoparticles. Phys Rev B 71: 085406 (2005)
[64]
U D Schwarz, C Ritter, M Heyde. Nanotribological studies by nanoparticle manipulation. In Fundamentals of Friction and Wear on the Nanoscale. E Meyer, E Gnecco, Ed. Heidelberg: Springer, 2007: 561-582.
[65]
S Darwich, K Mougin, A Rao, E Gnecco, S Jayaraman, H Haidara. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: Influence of particle substrate chemistry and morphology, and of operating conditions. Beilstein Journal of Nanotechnology 2: 85-98 (2011)
[66]
M Tripathi, G Paolicelli, S D‘Addato, S Valerie. Controlled AFM detachments and movement of nanoparticles: Gold clusters on HOPG at different temperatures. Nanotechnology 23: 245706 (2012)
[67]
M Ternes, C P Lutz, C F Hirjibehedin, F J Giessibl, A J Heinrich. The force needed to move an atom on a surface. Science 319: 1066 (2008)
[68]
G Langewisch, J Falter, H Fuchs, A Schirmeisen. Forces during the controlled displacement of organic molecules. Phys Rev Lett 110: 036101 (2013)
[69]
M Palacio, B Bhushan. A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments. Nanotechnology 19: 315710 (2008)
[70]
D Dietzel, T Mönninghoff, L Jansen, H Fuchs, C Ritter, U D Schwarz, A Schirmeisen. Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J Appl Phys 102: 084306 (2007)
[71]
H Ueyama, Y Sugawara, S Morita. Stable operation mode for dynamic noncontact atomic force microscopy. Appl Phys A Mater Sci Process 66: 295 (1998)
[72]
A Schirmeisen, H Hölscher, B Anczykowski, D Weiner, M M Schäfer, H Fuchs. Dynamic force spectroscopy using the constant-excitation and constant-amplitude modes. Nanotechnology 16: S13 (2005)
[73]
D Dietzel, M Feldmann, C Herding, U D Schwarz, A Schirmeisen. Quantifying pathways and friction of nanoparticles during controlled manipulation by contact-mode atomic force microscopy. Trib Lett 39: 273-281 (2010)
[74]
A Rao, M L Wille, E Gnecco, K Mougin, E Meyer. Trajectory fluctuations accompanying the manipulation of spherical nanoparticles. Phys Rev B 80: 193405 (2009)
[75]
P Nita, S Casado, D Dietzel, A Schirmeisen, E Gnecco. Spinning and translational motion of Sb nanoislands manipulated on MoS2. Nanotechnology 24: 325302 (2013)
[76]
Y Liu, I Szlufarska. Chemical origins of frictional aging. Phys Rev Lett 109: 186102 (2012)
[77]
Q Li, T E Tullis, D E Goldsby, R W Carpick. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480: 233 (2011)
[78]
M Evstvigeneev, P Reimann. Thermally activated contact strengthening explains nonmonotonic temperature and velocity dependence of atomic friction. Phys Rev X 3: 041020 (2013)
[79]
B N J Persson. Theory and simulation of sliding friction. Phys Rev Lett 71: 1212 (1993)
[80]
J A Greenwood, J B P Williamson. Contact of nominally flat surfaces. Proc R Soc Lond A 295: 300 (1966)
[81]
M Müser. Theoretical aspects of superlubricity. In Fundamentals of Friction and Wear on the Nanoscale. E Meyer, E Gnecco, Ed. Heidelberg: Springer, 2007: 177-210.
[82]
M H Müser, L Wenning, M O Robbins. Simple microscopic theory of Amontons’s laws for static friction. Phys Rev Lett 86: 1295-1298 (2001)
[83]
M Hirano, K Shinjo. Atomistic locking and friction. Phys Rev B 41: 11837 (1990)
[84]
K Shinjo, M Hirano. Dynamics of friction: Superlubric state. Surf Sci 283: 473-478 (1993)
[85]
M H Müser. Structural lubricity: Role of dimension and symmetry. Europhys Lett 66: 97-103 (2004)
[86]
J M Martin, C Donnet, T L Mogne, T Epicier. Superlubricity of molybdenum disulphide. Phys Rev B 48: 10583 (1993)
[87]
M Hirano, K Shinjo, R Kaneko, Y Murata. Observation of superlubricity by scanning tunneling microscopy. Phys Rev Lett 78: 1448 (1997)
[88]
A Crossley, E H Kisi, J W B Summers, S Myhra. Ultra-low friction for a layered carbide-derived ceramic, Ti3SiC2, investigated by lateral force microscopy (LFM). J Phys D 32: 632 (1999)
[89]
Z Liu,, J Yang, F Grey, J Z Liu, Y Liu, Y Wang, Y Yang, Y Cheng, Q Zheng. Observation of microscale superlubricity in graphite. Phys Rev Lett 108: 205503 (2012)
[90]
M Reguzzonia, M Ferrarioa, S Zapperia, M C Righia. Onset of frictional slip by domain nucleation in adsorbed monolayers. PNAS 107: 1313 (2010)
[91]
M Hirano, K Shinjo. Superlubricity and frictional anisotropy. Wear 168: 121-125 (1993)
[92]
M R Sørensen, K W Jacobsen, P Stoltze. Simulations of atomic-scale sliding friction. Phys Rev B 53: 2101-2113 (1996)
[93]
M H Müser, M O Robbins. Conditions for static friction between flat crystalline surfaces. Phys Rev B 61: 2335-2342 (2000)
[94]
Y Mo, K T Turner, I Szlufarska. Friction laws at the nanoscale. Nature 457: 1116-1119 (2009)
[95]
G He, M H Müser, M O Robbins. Adsorbed layers and the origin of static friction. Science 284: 1650-1652 (1999)
[96]
D Dietzel, M Feldmann, H Fuchs, U D Schwarz, A Schirmeisen. Scaling laws of structural lubricity—Supplemental material. Phys Rev Lett 111: 235502 (2013)
[97]
H Hölscher, W Allers, U D Schwarz, A Schwarz, R Wiesendanger. Interpretation of true atomic resolution images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B 62: 6967-6970 (2000)
[98]
P Jensen, X Blase, P Ordéjon. First principles study of gold adsorption and diffusion on graphite. Surf Sci 564: 173-178 (2004)
Friction
Pages 114-139
Cite this article:
DIETZEL D, SCHWARZ UD, SCHIRMEISEN A. Nanotribological studies using nanoparticle manipulation: Principles and application to structural lubricity. Friction, 2014, 2(2): 114-139. https://doi.org/10.1007/s40544-014-0054-2

834

Views

11

Downloads

44

Crossref

N/A

Web of Science

44

Scopus

0

CSCD

Altmetrics

Received: 13 April 2014
Accepted: 02 June 2014
Published: 19 June 2014
© The author(s) 2014

This article is published with open access at Springerlink.com

Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return