AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (9.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

From ice superlubricity to quantum friction: Electronic repulsivity and phononic elasticity

Xi ZHANG1( )Yongli HUANG2Zengsheng MA2Lengyuan NIU3Chang Qing SUN4( )
 Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China
 Key Laboratory of Low-dimensional Materials and Application Technology (MOE) and School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
 Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
 NOVITAS, School of EEE, Nanyang Technological University, 639798, Singapore
Show Author Information

Abstract

Superlubricity means non-sticky and frictionless when two bodies are set contacting motion. Although this occurrence has been extensively investigated since 1859 when Faraday firstly proposed a quasiliquid skin on ice, the mechanism behind the superlubricity remains uncertain. This report features a consistent understanding of the superlubricity pertaining to the slipperiness of ice, self-lubrication of dry solids, and aqueous lubricancy from the perspective of skin bond-electron-phonon adaptive relaxation. The presence of nonbonding electron polarization, atomic or molecular undercoordination, and solute ionic electrification of the hydrogen bond as an addition, ensures the superlubricity. Nonbond vibration creates soft phonons of high magnitude and low frequency with extraordinary adaptivity and recoverability of deformation. Molecular undercoordination shortens the covalent bond with local charge densification, which in turn polarizes the nonbonding electrons making them localized dipoles. The locally pinned dipoles provide force opposing contact, mimicking magnetic levitation and hovercraft. O:H−O bond electrification by aqueous ions has the same effect of molecular undercoordination but it is throughout the entire body of the lubricant. Such a Coulomb repulsivity due to the negatively charged skins and elastic adaptivity due to soft nonbonding phonons of one of the contacting objects not only lowers the effective contacting force but also prevents charge from being transited between the counterparts of the contact. Consistency between theory predictions and observations evidences the validity of the proposal of interface elastic Coulomb repulsion that serves as the rule for the superlubricity of ice, wet and dry frictions, which also reconciles the superhydrophobicity, superlubricity, and supersolidity at contacts.

References

[1]
Faraday M. Note on regelation. Proc R Soc London 10: 440-450 (1859).
[2]
Thomson J. Note on Professor Faraday’s recent experiments on regelation. Proc R Soc London 10: 151-160 (1859).
[3]
James T B. Melting and regelation of ice. Nature 5: 185 , 1872.
[4]
Bowden F, Hughes T. The mechanism of sliding on ice and snow. Proc Roy Soc London A 172(949): 280-298 (1939).
[5]
Gurney C. Surface forces in liquids and solids. Proc Roy Soc London A 62(358): 639-655 (1949).
[6]
Krim J. Friction at the atomic scale. Sci Am 275(4): 74-80 (1996).
[7]
Sun Y, Sun C Q. The Soul of Water: Single Notion, Multiple Myths, Springer-Verlag, 2016.
[8]
Liang H, Martin J M, Mogne T L. Experimental investigation of friction on low-temperature ice. Acta Mater 51(9): 2639-2646 (2003).
[9]
Sun C Q, Zhang X, Fu X, Zheng W, Kuo J-L, Zhou Y, Shen Z, Zhou J. Density and phonon-stiffness anomalies of water and ice in the full temperature range. J Phys Chem Lett 4: 3238-3244 (2013).
[10]
Kietzig A-M, Hatzikiriakos S G, Englezos P. Physics of ice friction. J Appl Phys 107(8): 081101-15 (2010).
[11]
Zhang X, Huang Y, Ma Z, Zhou Y, Zheng W, Zhou J, Sun C Q. A common supersolid skin covering both water and ice. Phys Chem Chem Phys 16(42): 22987-22994 (2014).
[12]
Sun C Q, Zhang X, Zhou J, Huang Y, Zhou Y, Zheng W. Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J Phys Chem Lett 4: 2565-2570 (2013).
[13]
Sun C Q. Relaxation of the Chemical Bond, Springer, 2014.
[14]
Silvera Batista C A, Larson R G, Kotov N A. Nonadditivity of nanoparticle interactions. Science 350(6257) (2015).
[15]
Li J, Chen H, Stone H A. Ice lubrication for moving heavy stones to the Forbidden City in 15th- and 16th-century China. Proc Natl Acad Sci USA 100(50): 20023-20027 (2013).
[16]
Krim J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv Phys 61(3): 155-323 (2012).
[17]
Sukhorukov S, Loset S. Friction of sea ice on sea ice. Cold Reg Sci Technol 94: 1-12 (2013).
[18]
Kennedy F, Schulson E, Jones D. The friction of ice on ice at low sliding velocities. Philos Mag A 80(5): 1093-1110 (2000).
[19]
Schulson E M, Fortt A L. Friction of ice on ice. J Geophys Res 117: B12204 , 2012.
[20]
Zhang X, Huang Y, Sun P, Liu X, Ma Z, Zhou Y, Zhou J, Zheng W, Sun C Q. Ice regelation: Hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci Rep 5: 13655 , 2015.
[21]
Rosenberg R. Why is ice slippery?. Phys Today 58(12): 50 , 2005.
[22]
Sun C Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog Solid State Chem 35(1): 1-159 (2007).
[23]
Strelcov E, Kumar R, Bocharova V, Sumpter B G, Tselev A, Kalinin S V. Nanoscale lubrication of ionic surfaces controlled via a strong electric field. Sci Rep 5: 8049 , 2015.
[24]
Orem M W, Adamson A W. Physical adsorption of vapor on ice: II. n-alkanes. J Colloid Interf Sci 31(2): 278-286 (1969).
[25]
Molina M J. Heterogeneous chemistry on polar stratospheric clouds. Atmos Environ A 25(11): 2535-2537 (1991).
[26]
Kvlividze V I, Kiselev V F, Kurzaev A B, Ushakova L A. The mobile water phase on ice surfaces. Surf Sci 44(1): 60-68 (1974).
[27]
Golecki I, Jaccard C. The surface of ice near 0 C studied by 100 keV proton channeling. Phys Lett A 63(3): 374-376 (1977).
[28]
Furukawa Y, Yamamoto M, Kuroda T. Ellipsometric study of the transition layer on the surface of an ice crystal. J Cryst Growth 82(4): 665-677 (1987).
[29]
Dosch H, Lied A, Bilgram J H. Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf Sci 327(1–2): 145-164 (1995).
[30]
Li Y, Somorjai G A. Surface premelting of ice. J Phys Chem C 111(27): 9631-9637 (2007).
[31]
Döppenschmidt A, Butt H-J. Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy. Langmuir 16(16): 6709-6714 (2000).
[32]
Engemann S, Reichert H, Dosch H, Bilgram J, Honkimaki V, Snigirev A. Interfacial melting of ice in contact with SiO2. Phys Rev Lett 92(20): 205701 , 2004.
[33]
Sun C Q, Sun Y, Ni Y G, Zhang X, Pan J S, Wang X H, Zhou J, Li L T, Zheng W T, Yu S S, Pan L K, Sun Z. Coulomb repulsion at the nanometer-sized contact: A force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity. J Phys Chem C 113(46): 20009-20019 (2009).
[34]
Sun C Q, Zhang X, Zheng W T. Hidden force opposing ice compression. Chem Sci 3: 1455-1460 (2012).
[35]
Huang Y, Zhang X, Ma Z, Zhou Y, Zhou J, Zheng W, Sun C Q. Size, separation, structure order, and mass density of molecules packing in water and ice. Sci Rep 3: 3005 , 2013.
[36]
Huang Y, Zhang X, Ma Z, Zhou Y, Zheng W, Zhou J, Sun C Q. Hydrogen-bond relaxation dynamics: Resolving mysteries of water ice. Coord Chem Rev 285: 109-165 (2015).
[37]
Liu X J, Bo M L, Zhang X, Li L T, Nie Y G, Tian H, Sun Y, Xu S, Wang Y, Zheng W, Sun C Q. Coordination-resolved electron spectrometrics. Chem. Rev 115(14): 6746-6810 (2015).
[38]
Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342(6158): 611-614 (2013).
[39]
Wilson K R, Schaller R D, Co D T, Saykally R J, Rude B S, Catalano T, Bozek J D. Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy. J Chem Phys 117(16): 7738-7744 (2002).
[40]
Kahan T F, Reid J P, Donaldson D J. Spectroscopic probes of the quasi-liquid layer on ice. J Phys Chem A 111(43): 11006-11012 (2007).
[41]
Sulpizi M, Salanne M, Sprik M, Gaigeot M-P. Vibrational sum frequency generation spectroscopy of the water liquid– vapor interface from density functional theory-based molecular dynamics simulations. J Phys Chem Lett 4(1): 83-87 (2013).
[42]
Abu-Samha M, Borve K J, Winkler M, Harnes J, Saethre L J, Lindblad A, Bergersen H, Ohrwall G, Bjorneholm O, Svensson S. The local structure of small water clusters: Imprints on the core-level photoelectron spectrum. J Phys B 42(5): 055201 , 2009.
[43]
Nishizawa K, Kurahashi N, Sekiguchi K, Mizuno T, Ogi Y, Horio T, Oura M, Kosugi N, Suzuki T. High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys Chem Chem Phys 13: 413-417 (2011).
[44]
Winter B, Aziz E F, Hergenhahn U, Faubel M, Hertel I V. Hydrogen bonds in liquid water studied by photoelectron spectroscopy. J Chem Phys 126(12): 124504 , 2007.
[45]
Harich S A, Hwang D W H, Yang X, Lin J J, Yang X, Dixon R N. Photodissociation of H2O at 121.6 nm: A state-to-state dynamical picture. J Chem Phys 113(22): 10073-10090 (2000).
[46]
Uysal A, Chu M, Stripe B, Timalsina A, Chattopadhyay S, Schlepütz C M, Marks T J, Dutta P. What x rays can tell us about the interfacial profile of water near hydrophobic surfaces. Phys Rev B 88(3): 035431 , 2013.
[47]
Hammer N I, Shin J W, Headrick J M, Diken E G, Roscioli J R, Weddle G H, Johnson M A. How do small water clusters bind an excess electron?. Science 306(5696): 675-679 (2004).
[48]
Marsalek O, Uhlig F, Frigato T, Schmidt B, Jungwirth P. Dynamics of electron localization in warm versus cold water clusters. Phys Rev Lett 105(4): 043002 , 2010.
[49]
Liu S, Luo J, Xie G, Guo D. Effect of surface charge on water film nanoconfined between hydrophilic solid surfaces. J Appl Phys 105(12): 124301-4 (2009).
[50]
Siefermann K R, Liu Y, Lugovoy E, Link O, Faubel M, Buck U, Winter B, Abel B. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat Chem 2: 274-279 (2010).
[51]
Paik D H, Lee I R, Yang D S, Baskin J S, Zewail A H. Electrons in finite-sized water cavities: hydration dynamics observed in real time. Science 306(5696): 672-675 (2004).
[52]
Verlet J R R, Bragg A E, Kammrath A, Cheshnovsky O, Neumark D M. Observation of large water-cluster anions with surface-bound excess electrons. Science 307(5706): 93-96 (2005).
[53]
Vacha R, Marsalek O, Willard A P, Bonthuis D J, Netz R R, Jungwirth P. Charge transfer between water molecules as the possible origin of the observed charging at the surface of pure water. J Phys Chem Lett 3(1): 107-111 (2012).
[54]
Baletto F, Cavazzoni C, Scandolo S. Surface trapped excess electrons on ice. Phys Rev Lett 95(17): 176801 , 2005.
[55]
Turi L, Sheu W S, Rossky P J. Characterization of excess electrons in water-cluster anions by quantum simulations. Science 309(5736): 914-917 (2005).
[56]
Zhang X, Sun P, Huang Y, Ma Z, Liu X, Zhou J, Zheng W, Sun C Q. Water nanodroplet thermodynamics: Quasi-solid phase-boundary dispersivity. J Phys Chem B 119(16): 5265-5269 (2015).
[57]
Qiu H, Guo W. Electromelting of confined monolayer ice. Phys Rev Lett 110(19): 195701 , 2013.
[58]
Li J, Li Y X, Yu X, Ye W J, Sun C Q. Local bond average for the thermally driven elastic softening of solid specimens. J Phys D-Appl Phys 42(4): 045406 , 2009.
[59]
Holmes M J, Parker N G, Povey M J W. Temperature dependence of bulk viscosity in water using acoustic spectroscopy. J Phys: Conf Ser 269: 012011 , 2011.
[60]
Xu D, Liechti K M, Ravi-Chandar K. Mechanical probing of icelike water monolayers. Langmuir 25(22): 12870-12873 (2009).
[61]
Jinesh K B, Frenken J W M. Experimental evidence for ice formation at room temperature. Phys Rev Lett 101(3): 036101 , 2008.
[62]
Kim E, Chan M H W. Probable observation of a supersolid helium phase. Nature 427(6971): 225-227 (2004).
[63]
Balibar S, Caupin F. Supersolidity and disorder. J Phys: Condens Matter 20(17): 173201 , 2008.
[64]
Hunt B, Pratt E, Gadagkar V, Yamashita M, Balatsky A V, Davis J C. Evidence for a superglass state in solid 4He. Science 324: 632-636 (2009).
[65]
Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J, Fang H. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys Rev Lett 103(13): 137801-137804 (2009).
[66]
James M, Darwish T A, Ciampi S, Sylvester S O, Zhang Z M, Ng A, Gooding J J, Hanley T L. Nanoscale condensation of water on self-assembled monolayers. Soft Matter 7(11): 5309-5318 (2011).
[67]
Ishiyama T, Takahashi H, Morita A. Origin of vibrational spectroscopic response at ice surface. J Phys Chem Lett 3: 3001-3006 (2012).
[68]
Sun C Q. Oxidation electronics: Bond-band-barrier correlation and its applications. Prog Mater Sci 48(6): 521-685 (2003).
[69]
Guo J, Meng X, Chen J, Peng J, Sheng J, Li X-Z, Xu L, Shi J-R, Wang E, Jiang Y. Real-space imaging of interfacial water with submolecular resolution. Nat Mater 13: 184-189 (2014).
[70]
Bluhm H, Inoue T, Salmeron M. Friction of ice measured using lateral force microscopy. Phys Rev B 61(11): 7760 , 2000.
[71]
Andreev A, Lifshits I. Quantum theory of defects in crystals. Zhur Eksper Teoret Fiziki 56(6): 2057-2068 (1969).
[72]
Schindler T L. A possible new form of ‘supersolid’ matter national science foundation news. http://www.nsf.gov/news/ news_videos.jsp?org=NSF&cntn_id=100323&preview=false&media_id=51151, 2005.
[73]
Kim E, Chan M H. Observation of superflow in solid helium. Science 305(5692): 1941-1944 (2004).
[74]
Day J, Beamish J. Low-temperature shear modulus changes in solid He-4 and connection to supersolidity. Nature 450(7171): 853-856 (2007).
[75]
Balibar S. Supersolid helium: Stiffer but flowing. Nat Phys 5(8): 534-535 (2009).
[76]
Anderson P W. A gross-pitaevskii treatment for supersolid helium. Science 324: 631-632 (2009).
[77]
Pollet L, Boninsegni M, Kuklov A B, Prokof'ev N V, Svistunov B V, Troyer M. Local stress and superfluid properties of solid He-4. Phys Rev Lett 101(9): 097202 , 2008.
[78]
Sasaki S, Ishiguro R, Caupin F, Maris H J, Balibar S. Superfluidity of grain boundaries and supersolid behavior. Science 313(5790): 1098-1100 (2006).
[79]
Maris H J. Effect of elasticity on torsional oscillator experiments probing the possible supersolidity of helium. Phys Rev B 86(2): 020502 , 2012.
[80]
Kim D Y, Chan M H W. Absence of supersolidity in solid helium in porous vycor glass. Phys Rev Lett 109(15): 155301 , 2012.
[81]
Kim D Y, Chan M H W. Upper limit of supersolidity in solid helium. Phys Rev B 90(6): 064503 , 2014.
[82]
Saunders J. A glassy state of supersolid helium. Science 324: 601-602 (2009).
[83]
Dorsey A T, Huse D A. Condensed-matter physics: Shear madness. Nature 450(7171): 800-801 (2007).
[84]
Socoliuc A, Gnecco E, Maier S, Pfeiffer O, Baratoff A, Bennewitz R, Meyer E. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313(5784): 207-210 (2006).
[85]
Gnecco E, Maier S, Meyer E. Superlubricity of dry nanocontacts. J Phys-Condensed Matter 20(35): 354004 , 2008.
[86]
Thomas J A, McGaughey A J H. Reassessing fast water transport through carbon nanotubes. Nano Lett 8(9): 2788-2793 (2008).
[87]
Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289(5479): 602-604 (2000).
[88]
Cannara R J, Brukman M J, Cimatu K, Sumant A V, Baldelli S, Carpick R W. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318(5851): 780-783 (2007).
[89]
Socoliuc A, Bennewitz R, Gnecco E, Meyer E. Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys Rev Lett 92(13): 134301 , 2004.
[90]
Erdemir A, Martin J M Eds. Superlubricity, Elsevier, 2007.
[91]
Yuan Q Z, Zhao Y P. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J Am Chem Soc 131(18): 6374-6376 (2009).
[92]
Park J Y, Ogletree D F, Thiel P A, Salmeron M. Electronic control of friction in silicon pn junctions. Science 313(5784): 186-186 (2006).
[93]
Tomlinson G. CVI. A molecular theory of friction. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 7(46): 905-939 (1929).
[94]
Prandtl L. Mind model of the kinetic theory of solid bodies. Z Ang Math Mech 8: 85-106 (1928).
[95]
Mo Y F, Turner K T, Szlufarska I. Friction laws at the nanoscale. Nature 457(7233): 1116-1119 (2009).
[96]
Sun C Q, Bai H L, Tay B K, Li S, Jiang E Y. Dimension, strength, and chemical and thermal stability of a single C–C bond in carbon nanotubes. J Phys Chem B 107(31): 7544-7546 (2003).
[97]
Sun C Q. A model of bonding and band-forming for oxides and nitrides. Appl Phys Lett 72(14): 1706-1708 (1998).
[98]
Zheng W T, Sun C Q. Electronic process of nitriding: Mechanism and applications. Prog Solid State Chem 34(1): 1-20 (2006).
[99]
Sun C Q, Tay B K, Lau S P, Sun X W, Zeng X T, Li S, Bai H L, Liu H, Liu Z H, Jiang E Y. Bond contraction and lone pair interaction at nitride surfaces. J Appl Phys 90(5): 2615-2617 (2001).
[100]
Sun C Q. Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Prog Mater Sci 54(2): 179-307 (2009).
[101]
Lu C, Mai Y W, Tam P L, Shen Y G. Nanoindentation-induced elastic-plastic transition and size effect in α-Al2O3(0001). Philos Mag Lett 87(6): 409-415 (2007).
[102]
Zhao Y P. Physical Mechanics of Surface and Interface. Beijing: Science Press, 2012.
[103]
Li J, Zhang C, Luo J. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir 27(15): 9413-9417 (2011).
[104]
Li J, Zhang C, Sun L, Lu X, Luo J. Tribochemistry and superlubricity induced by hydrogen ions. Langmuir 28(45): 15816-15823 (2012).
[105]
Li J, Zhang C, Ma L, Liu Y, Luo J. Superlubricity achieved with mixtures of acids and glycerol. Langmuir 29(1): 271-275 (2012).
[106]
Donose B C, Vakarelski I U, Higashitani K. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. Langmuir 21(5): 1834-1839 (2005).
[107]
Ma Z-Z, Zhang C-H, Luo J-B, Lu X-C, Wen S-Z. Superlubricity of a mixed aqueous solution. Chin Phys Lett 28(5): 056201 , 2011.
[108]
Li J, Zhang C, Luo J. Superlubricity achieved with mixtures of polyhydroxy alcohols and acids. Langmuir 29(17): 5239-5245 (2013).
Friction
Pages 294-319
Cite this article:
ZHANG X, HUANG Y, MA Z, et al. From ice superlubricity to quantum friction: Electronic repulsivity and phononic elasticity. Friction, 2015, 3(4): 294-319. https://doi.org/10.1007/s40544-015-0097-z

884

Views

22

Downloads

26

Crossref

N/A

Web of Science

24

Scopus

4

CSCD

Altmetrics

Received: 10 September 2015
Revised: 22 October 2015
Accepted: 26 September 2015
Published: 23 December 2015
© The author(s) 2015

This article is published with open access at Springerlink.com

Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return