AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (992.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Friction characteristics of mechanically exfoliated and CVD- grown single-layer MoS2

Dinh Le Cao KY1Bien-Cuong TRAN KHAC1Chinh Tam LE2Yong Soo KIM1Koo-Hyun CHUNG1( )
 School of Mechanical Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
 Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
Show Author Information

Abstract

In this work, the friction characteristics of single-layer MoS2 prepared with chemical vapor deposition (CVD) at three different temperatures were quantitatively investigated and compared to those of single-layer MoS2 prepared using mechanical exfoliation. The surface and crystalline qualities of the MoS2 specimens were characterized using an optical microscope, atomic force microscope (AFM), and Raman spectroscopy. The surfaces of the MoS2 specimens were generally flat and smooth. However, the Raman data showed that the crystalline qualities of CVD-grown single-layer MoS2 at 800 °C and 850 °C were relatively similar to those of mechanically exfoliated MoS2 whereas the crystalline quality of the CVD-grown single-layer MoS2 at 900 °C was lower. The CVD-grown single-layer MoS2 exhibited higher friction than mechanically exfoliated single-layer MoS2, which might be related to the crystalline imperfections in the CVD-grown MoS2. In addition, the friction of CVD-grown single-layer MoS2 increased as the CVD growth temperature increased. In terms of tribological properties, 800 °C was the optimal temperature for the CVD process used in this work. Furthermore, it was observed that the friction at the grain boundary was significantly larger than that at the grain, potentially due to defects at the grain boundary. This result indicates that the temperature used during CVD should be optimized considering the grain size to achieve low friction characteristics. The outcomes of this work will be useful for understanding the intrinsic friction characteristics of single-layer MoS2 and elucidating the feasibility of single-layer MoS2 as protective or lubricant layers for micro- and nano-devices.

References

[1]
Jiang J, Zhuang X, Rabczuk T. Orientation dependent thermal conductance in single-layer MoS2. Scientific Reports 3:2209(2013)
[2]
Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B 83(24):245213(2011)
[3]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano 7(11):699–712(2012)
[4]
Clark D J, Le C T, Senthilkumar V, Ullah F, Cho H Y, Sim Y, Seong M J, Chung K, Kim Y S, Jang J I. Near bandgap second-order nonlinear optical characteristics of MoS2 monolayer transferred on transparent substrates. Appl Phys Lett 107(13):131113(2015)
[5]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nano 6(3):147–150(2011)
[6]
Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12):9934–9938(2011)
[7]
Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. Single-layer MoS2 phototransistors. ACS Nano 6(1):74–80(2012)
[8]
Lee H S, Min S, Chang Y, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12(7):3695–3700(2012)
[9]
Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1):63–67(2012)
[10]
Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T. Chemical vapor sensing with monolayer MoS2. Nano Lett 13(2):668–673(2013)
[11]
Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano 5(12):9703–9709(2011)
[12]
Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agraït N, Rubio-Bollinger G. Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24(6):772–775(2012)
[13]
Martin J M, Donnet C, Le Mogne T, Epicier T. Superlubricity of molybdenum disulphide. Phys Rev B 48(14):10583–10586(1993).
[14]
Lee C, Li Q, Kalb W, Liu X, Berger H, Carpick R W, Hone J. Frictional characteristics of atomically thin sheets. Science 328(5974):76–80(2010)
[15]
Donnet C, Erdemir A. Solid lubricant coatings: Recent developments and future trends. Tribology Letters 17(3):389–397(2004)
[16]
Sen H S, Sahin H, Peeters F M, Durgun E. Monolayers of MoS2 as an oxidation protective nanocoating material. J Appl Phys 116(8):083508(2014)
[17]
Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R. Friction and dissipation in epitaxial graphene films. Phys Rev Lett 102(8):086102(2009)
[18]
Choi J S, Kim J, Byun I, Lee D H, Lee M J, Park B H, Lee C, Yoon D, Cheong H, Lee K H, Son Y, Park J Y, Salmeron M. Friction anisotropy–Driven domain imaging on exfoliated monolayer graphene. Science 333(6042):607–610(2011)
[19]
Kwon S, Ko J, Jeon K, Kim Y, Park J Y. Enhanced nanoscale friction on fluorinated graphene. Nano Lett 12(12):6043–6048(2012)
[20]
Cho D, Wang L, Kim J, Lee G, Kim E S, Lee S, Lee S Y, Hone J, Lee C. Effect of surface morphology on friction of graphene on various substrates. Nanoscale 5(7):3063–3069(2013)
[21]
Deng Z, Klimov N N, Solares S D, Li T, Xu H, Cannara R J. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene. Langmuir 29(1):235–243(2013)
[22]
Tran Khac B C, Chung K. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy. Ultramicroscopy 161:41–50(2016).
[23]
Quereda J, Castellanos-Gomez A, Agraït N, Rubio-Bollinger G. Single-layer MoS2 roughness and sliding friction quenching by interaction with atomically flat substrates. Appl Phys Lett 105(5):053111(2014)
[24]
Schumacher A, Kruse N, Prins R, Meyer E, Lüthi R, Howald L, Güntherodt H, Scandella L. Influence of humidity on friction measurements of supported MoS2 single layers. Journal of Vacuum Science & Technology B 14(2):1264–1267(1996)
[25]
Wu Z, Wang D, Wang Y, Sun A. Preparation and tribological properties of MoS2 nanosheets. Advanced Engineering Materials 12(6):534–538(2010)
[26]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science 306(5696):666-669(2004)
[27]
Zhou K, Mao N, Wang H, Peng Y, Zhang H. A mixed- solvent strategy for efficient exfoliation of inorganic graphene analogues. Angewandte Chemie International Edition 50(46):10839–10842(2011)
[28]
Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen B S, Topsøe H, Besenbacher F. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys Rev Lett 84(5):951–954(2000).
[29]
Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van d Z, Steele G A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett 12(6): 3187–3192 (2012)
[30]
Lu X, Utama M I B, Zhang J, Zhao Y, Xiong Q. Layer- by-layer thinning of MoS2 by thermal annealing. Nanoscale 5(19):8904–8908(2013)
[31]
Liu Y, Nan H, Wu X, Pan W, Wang W, Bai J, Zhao W, Sun L, Wang X, Ni Z. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7(5):4202–4209(2013)
[32]
Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7):966–971(2012)
[33]
Lee Y, Zhang X, Zhang W, Chang M, Lin C, Chang K, Yu Y, Wang J T, Chang C, Li L, Lin T. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325(2012)
[34]
van d Z, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G, Heinz T F, Reichman D R, Muller D A, Hone J C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12(6):554–561(2013)
[35]
Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J, Ajayan P M, Lou J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12(8):754–759(2013)
[36]
Zafar A, Nan H, Zafar Z, Wu Z, Jiang J, You Y, Ni Z. Probing the intrinsic optical quality of CVD grown MoS2. Nano Research 19(5):1608–1617(2016)
[37]
Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J B, Wu J. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett 14(9):5097–5103(2014)
[38]
Najmaei S, Liu Z, Ajayan P M, Lou J. Thermal effects on the characteristic raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl Phys Lett 100(1):013106(2012)
[39]
Lanzillo N A, Glen Birdwell A, Amani M, Crowne F J, Shah P B, Najmaei S, Liu Z, Ajayan P M, Lou J, Dubey M, Nayak S K, O'Regan T P. Temperature-dependent phonon shifts in monolayer MoS2. Appl Phys Lett 103(9):093102(2013)
[40]
Tran Khac B C, Jeon K, Choi S T, Kim Y S, DelRio F W, Chung K. Laser-induced particle adsorption on atomically thin MoS2. ACS Appl Mater Interfaces 8(5):2974–2984(2016)
[41]
Hutter J L, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7): 1868–1873 (1993)
[42]
Varenberg M, Etsion I, Halperin G. An improved wedge calibration method for lateral force in atomic force microscopy. Rev Sci Instrum 74(7):3362–3367(2003)
[43]
Chung K H. Wear characteristics of atomic force microscopy tips: A reivew. International Journal of Precision Engineering and Manufacturing 15(10):2219–2230(2014)
[44]
Cappella B, Dietler G. Force-distance curves by atomic force microscopy. Surface Science Reports 34(1–3):1–104(1999)
[45]
Gotsmann B, Lantz M A. Atomistic wear in a single asperity sliding contact. Phys Rev Lett 101:125501(2008)
[46]
Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5):2695–2700(2010).
[47]
Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D. From bulk to monolayer MoS2: Evolution of raman scattering. Advanced Functional Materials 22(7):1385–1390(2012)
[48]
Nemes-Incze P, Osváth Z, Kamarás K, Biró L P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46(11):1435–1442(2008)
[49]
Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Scientific Reports 3:1866(2013)
[50]
Brivio J, Alexander D T L, Kis A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett 11(12):5148–5153(2011)
[51]
Plechinger G, Mann J, Preciado E, Barroso D, Nguyen A, Eroms J, SchÃller C, Bartels L, Korn T. A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy. Semiconductor Science and Technology 29(6):064008(2014).
[52]
Mo Y, Turner K T, Szlufarska I. Friction laws at the nanoscale. Nature 457(7233):1116–1119(2009)
Friction
Pages 395-406
Cite this article:
KY DLC, TRAN KHAC B-C, LE CT, et al. Friction characteristics of mechanically exfoliated and CVD- grown single-layer MoS2. Friction, 2018, 6(4): 395-406. https://doi.org/10.1007/s40544-017-0172-8

716

Views

24

Downloads

54

Crossref

N/A

Web of Science

52

Scopus

0

CSCD

Altmetrics

Received: 17 April 2017
Revised: 06 June 2017
Accepted: 07 June 2017
Published: 20 November 2017
© The author(s) 2017

This article is published with open access at Springerlink.com

Open Access: The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return