AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (994.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Strength of adhesive contacts: Influence of contact geometry and material gradients

Valentin L. POPOV1,2( )Roman POHRT1Qiang LI1
 Institute of Mechanics, Technische Universität Berlin, Berlin 10623, Germany
 National Research Tomsk Polytechnic University, Tomsk 634050, Russia
Show Author Information

Abstract

The strength of an adhesive contact between two bodies can strongly depend on the macroscopic and microscopic shape of the surfaces. In the past, the influence of roughness has been investigated thoroughly. However, even in the presence of perfectly smooth surfaces, geometry can come into play in form of the macroscopic shape of the contacting region. Here we present numerical and experimental results for contacts of rigid punches with flat but oddly shaped face contacting a soft, adhesive counterpart. When it is carefully pulled off, we find that in contrast to circular shapes, detachment occurs not instantaneously but detachment fronts start at pointed corners and travel inwards, until the final configuration is reached which for macroscopically isotropic shapes is almost circular. For elongated indenters, the final shape resembles the original one with rounded corners. We describe the influence of the shape of the stamp both experimentally and numerically.

Numerical simulations are performed using a new formulation of the boundary element method for simulation of adhesive contacts suggested by Pohrt and Popov. It is based on a local, mesh dependent detachment criterion which is derived from the Griffith principle of balance of released elastic energy and the work of adhesion. The validation of the suggested method is made both by comparison with known analytical solutions and with experiments. The method is applied for simulating the detachment of flat-ended indenters with square, triangle or rectangular shape of cross-section as well as shapes with various kinds of faults and to “brushes”. The method is extended for describing power-law gradient media.

References

[1]
Lee L H (Ed.). Fundamentals of Adhesion. New York: Springer Science & Business Media, 1991
[2]
Dzyaloshinskii I E, Lifshitz E M, Pitaevskii L P. General Theory of van der Waals’ Forces. Soviet Physics Uspekhi 4:153176(1961)
[3]
Landau L D, Lifshitz E M. Statistical Physics, Pt. 2, (Volume 9 of the Course of Theoretical Physics). Oxford: Pergamon Press, 1980
[4]
Afferrante L, Carbone G. The ultratough peeling of elastic tapes from viscoelastic substrates. Journal of the Mechanics and Physics of Solids 96:223234(2016)
[5]
Popov V L, Filippov A E, Gorb S N. Biological microstructures with high adhesion and friction. Numerical approach. Physics-Uspekhi 59(9):829845(2016)
[6]
Autumn K, Liang Y A, Tonia Hsieh S, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature 405:681685(2000)
[7]
Köster S, Janshoff A. Editorial–Special issue on mechanobiology. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853(11, Part B):29752976(2015)10.1016/j.bbamcr.2015.08.002
[8]
Popov V L. Contact Mechanics and Friction─Physical Principles and Applications. Berlin: Springer-Verlag Berlin Heidelberg, 2010
[9]
Kendall K. Molecular Adhesion and Its Applications. New York (US): Springer Science & Business Media, 2001
[10]
Luan B, Robbins M O. The breakdown of continuum models for mechanical contacts. Nature 435(7044):929932(2005)
[11]
Ciavarella M. On Pastewka and Robbins’ criterion for macroscopic adhesion of rough surfaces. Journal of Tribology 139(3):031404(2017)
[12]
Guduru P R. Detachment of a rigid solid from an elastic wavy surface: theory. Journal of the Mechanics and Physics of Solids 55(3):445472(2007)
[13]
Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids. Proc. R. Soc. London A 324:301313(1971)
[14]
Maugis D. Adhesion of spheres: The JKR-DMT transition using a Dugdale model. Journal of Colloid and Interface Science 150(1):243269(1992)
[15]
Cheng A H-D, Cheng D T. Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements 29:268302(2005)
[16]
Cruse T A. Boundary Element Analysis in Computational Fracture Mechanics. Kluwer, Dordrecht, 1988
[17]
Blandford G E, Ingraffea A R, Liggett J A. Two-dimensional stress intensity factor computations using the boundary element method. International Journal for Numerical Methods in Engineering 17(3):387404(1974)
[18]
Pohrt R, Popov V L. Adhesive contact simulation of elastic solids using local mesh-dependent detachment criterion in Boundary Elements Method. Facta Universitatis, Series: Mechanical Engineering 13(1):310(2015)
[19]
Hulikal S, Bhattacharya K, Lapusta N. A threshold-force model for adhesion and mode I fracture. arXiv:1606.03166.
[20]
Rey V, Anciaux G, Molinari J-F. Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution. Comput Mech, (2017)
[21]
Kendall K. The adhesion and surface energy of elastic solids. Journal of Physics D: Applied Physics 4(8):1186(1971)
[22]
Li Q, Popov V L. Indentation of flat-ended and tapered indenters with polygonal cross-section. Facta Universitatis Series: Mechanial Engineeering 14(3):241249(2016)
[23]
Holm R, Holm E. Electric Contacts Handbook. Berlin: Springer-Verlag, 1958
[24]
Griffith A A. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, A 221:163198(1921)
[25]
Pohrt R, Li Q. Complete boundary element formulation for normal and tangential contact problems. Physical Mesomechanics 17(4):334340(2014)
[26]
Putignano C, Afferrante L, Carbone G, Demelio G. A new efficient numerical method for contact mechanics of rough surfaces. International Journal of Solids and Structures 49(2):338343(2012)
[27]
Maugis D, Barquins M. Adhesive contact of a conical punch on an elastic half-space. Le Journal de Physique Lettres 42(5):9597(1981)
[28]
Li Q, Popov V L. Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials. arXiv:1612.08395 (2016)
[29]
Argatov I I, Li Q, Pohrt R, Popov V L. Johnson-Kendall- Roberts Adhesive Contact for a Toroidal Indenter. Proceedings of the Royal Society of London, Series A 472(2191):(2016)
[30]
Popov V L. Basic ideas and applications of the method of reduction of dimensionality in contact mechanics. Physical Mesomechanics 15:254263(2012)
[31]
Maugis D. Adhesion of spheres: The JKR-DMT transition using a Dugdale model. Journal of Colloid and Interface Science 150(1):243269(1992)
[32]
Suresh S. Graded materials for resistance to contact deformation and damage. Science 292:24472451(2001)
[33]
Jha D K, Kant T, Singh R K. A critical review of recent research on functionally graded plates. Composite Structures 96:833849(2013)
[34]
Hess M, Popov V L. Method of dimensionality reduction in contact mechanics and friction: A user’s handbook. II Power- law graded materials. Facta Universitatis, Series: Mechanical Engineering 14(3):251268(2016)
[35]
Heß M. A simple method for solving adhesive and non- adhesive axisymmetric contact problems of elastically graded materials. International Journal of Engineering Science 104:2033(2016)
Friction
Pages 308-325
Cite this article:
POPOV VL, POHRT R, LI Q. Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction, 2017, 5(3): 308-325. https://doi.org/10.1007/s40544-017-0177-3

983

Views

34

Downloads

99

Crossref

N/A

Web of Science

109

Scopus

1

CSCD

Altmetrics

Received: 01 April 2017
Revised: 07 June 2017
Accepted: 19 June 2017
Published: 06 September 2017
© The author(s) 2017

This article is published with open access at Springerlink.com

Open Access: The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return