AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials

Zhengjia JI1,2Lin ZHANG1Guoxin XIE1( )Wenhu XU3Dan Guo1Jianbin LUO1( )Braham PRAKASH1
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
College of Mechanical Engineering, Qinghai University, Xi’ning 810016, China
Key Laboratory of Tribology, School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
Show Author Information

Abstract

In recent years, attempts to improve the mechanical properties of composites have increased remarkably owing to the inadequate utilization of matrices in demanding technological systems where efficiency, durability, and environmental compatibility are the key requirements. The search for novel materials that can potentially have enhanced mechanical properties continues. Recent studies have demonstrated that two-dimensional (2D) nanomaterials can act as excellent reinforcements because they possess high modulus of elasticity, high strength, and ultralow friction. By incorporating 2D nanomaterials in a composite, 2D nanomaterial-based composites (2DNBCs) have been developed. In view of this, a critical review of recent mechanical and tribological studies based on 2DNBCs has been undertaken. Matrices such as polymers, ceramics, and metals, as well as most of the representative 2D nanomaterial reinforcements such as graphene, boron nitride (BN), molybdenum disulfide (MoS2), and transition metal carbides and nitrides (MXenes) have been included in this review. Their preparation strategies, intrinsic mechanical properties, friction and lubrication performances, strengthening mechanisms, influencing factors, and potential applications have been comprehensively discussed. A brief summary and prospects are given in the final part, which would be useful in designing and fabricating advanced 2D nanocomposites in the future.

References

[1]
S Stankovich, D A Dikin, G H B Dommett, K M Kohlhaas, E J Zimney, E A Stach, R D Piner, S B T Nguyen, R S Ruoff. Graphene-based composite materials. Nature 442(7100): 282-286 (2006)
[2]
T Ramanathan, A A Abdala, S Stankovich, D A Dikin, M Herrera-Alonso, R D Piner, D H Adamson, H C Schniepp, X Chen, R S Ruoff, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3: 327-331 (2008)
[3]
X Huang, X Y Qi, F Boey, H Zhang. Graphene-based composites. Chem Soc Rev 41(2): 666-686 (2012)
[4]
S Kim, H T Wang, Y M Lee. 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew Chem Int Ed Engl 58(49): 17512-17527 (2019)
[5]
X Li, M Sun, C X Shan, Q Chen, X L Wei. Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv Mater Interfaces 5(5): 1701246 (2018)
[6]
Z Baig, O Mamat, M Mustapha. Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: A review. Crit Rev Solid State Mater Sci 43(1): 1-46 (2018)
[7]
C Lee, X D Wei, J W Kysar, J Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388 (2008)
[8]
W Wang, G X Xie, J B Luo. Black phosphorus as a new lubricant. Friction 6(1): 116-142 (2018)
[9]
M Naguib, M Kurtoglu, V Presser, J Lu, J J Niu, M Heon, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37): 4248-4253 (2011)
[10]
J Halim, S Kota, M R Lukatskaya, M Naguib, M Q Zhao, E J Moon, J Pitock, J Nanda, S J May, Y Gogotsi, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater 26(18): 3118- 3127 (2016)
[11]
V M Hong Ng, H Huang, K Zhou, P S Lee, W X Que, J Z Xu, L B Kong. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications. J Mater Chem A 5(7): 3039-3068 (2017)
[12]
W Y Dai, F Shao, J Szczerbiński, R McCaffrey, R Zenobi, Y H Jin, A D Schlüter, W Zhang. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew Chem Int Ed Engl 55(1): 213-217 (2016)
[13]
L C Liu, M Zhou, L Jin, L C Li, Y T Mo, G S Su, X Li, H W Zhu, Y Tian. Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 7(3): 199-216 (2019)
[14]
Z D Sha, Q X Pei, Z W Ding, J W Jiang, Y W Zhang. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J Phys D: Appl Phys 48(39): 395303 (2015)
[15]
C J Shuai, H Sun, C D Gao, P Feng, W Guo, Y Yang, M C Zhao, S Yang, F L Yuan, S P Peng. Mechanical reinforcement of bioceramics scaffolds via fracture energy dissipation induced by sliding action of MoS2 nanoplatelets. J Mech Behav Biomed Mater 75: 423- 433 (2017)
[16]
S Bertolazzi, J Brivio, A Kis. Stretching and breaking of ultrathin MoS2. ACS Nano 5(12): 9703-9709 (2011)
[17]
C Y Zhi, Y Bando, C C Tang, H Kuwahara, D Golberg. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21(28): 2889-2893 (2009)
[18]
J W Jiang, H S Park. Mechanical properties of single-layer black phosphorus. J Phys D: Appl Phys 47(38): 385304 (2014)
[19]
J B Pang, R G Mendes, A Bachmatiuk, L Zhao, H Q Ta, T Gemming, H Liu, Z F Liu, M H Rummeli. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48(1): 72-133 (2019)
[20]
C Hermosa, B R Horrocks, J I Martínez, F Liscio, J Gómez-Herrero, F Zamora. Mechanical and optical properties of ultralarge flakes of a metal-organic framework with molecular thickness. Chem Sci 6(4): 2553-2558 (2015)
[21]
D Li, R B Kaner. Graphene-based materials. Science 320(5880): 1170-1171 (2008)
[22]
H Kim, A A Abdala, C W Macosko. Graphene/polymer nanocomposites. Macromolecules 43(16): 6515-6530 (2010)
[23]
S F Bartolucci, J Paras, M A Rafiee, J Rafiee, S Lee, D Kapoor, N Koratkar. Graphene-aluminum nanocomposites. Mater Sci Eng: A 528(27): 7933-7937 (2011)
[24]
D G Papageorgiou, I A Kinloch, R J Young. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90: 75-127 (2017)
[25]
B W Chieng, N A Ibrahim, W M Z W Yunus, M Z Hussein, V S Giita Silverajah. Graphene nanoplatelets as novel reinforcement filler in poly(lactic acid)/epoxidized palm oil green nanocomposites: Mechanical properties. Int J Mol Sci 13(9): 10920-10934 (2012)
[26]
M El Achaby, F E Arrakhiz, S Vaudreuil, A El Kacem Qaiss, M Bousmina, O Fassi-Fehri. Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33(5): 733-744 (2012)
[27]
Y Ni, L Chen, K Teng, J Shi, X M Qian, Z W Xu, X Tian, C S Hu, M J Ma. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl Mater Interfaces 7(21): 11583-11591 (2015)
[28]
B Lee, D Lee, J H Lee, H J Ryu, S H Hong. Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites. Sci Rep 6(1): 27609 (2016)
[29]
H Porwal, R Saggar, P Tatarko, S Grasso, T Saunders, I Dlouhý, M J Reece. Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites. Ceram Int 42(6): 7533- 7542 (2016)
[30]
B Lee, M Y Koo, S H Jin, K T Kim, S H Hong. Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process. Carbon 78: 212-219 (2014)
[31]
J Y Sun, Y B Chen, M K Priydarshi, Z Chen, A Bachmatiuk, Z Y Zou, Z L Chen, X J Song, Y F Gao, M H Rümmeli, et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett 15(9): 5846-5854 (2015)
[32]
X J Wang, M Y Lu, L Qiu, H Huang, D Li, H T Wang, Y B Cheng. Graphene/titanium carbide composites prepared by sol-gel infiltration and spark plasma sintering. Ceram Int 42(1): 122-131 (2016)
[33]
P Colombo, G Mera, R Riedel, G D Sorarù. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7): 1805- 1837 (2010)
[34]
Y L Xiao, P P Yao, K Y Fan, H B Zhou, M W Deng, Z X Jin. Powder metallurgy processed metal-matrix friction materials for space applications. Friction 6(2): 219-229 (2018)
[35]
H Z Ye, X Y Liu, H P Hong. Fabrication of metal matrix composites by metal injection molding—A review. J Mater Process Technol 200(1-3): 12-24 (2008)
[36]
Y Song, G Y He, Y G Wang, Y Chen. Tribological behavior of boron nitride nanoplatelet reinforced Ni3Al intermetallic matrix composite fabricated by selective laser melting. Mater Design 165: 107579 (2019)
[37]
J Hwang, T Yoon, S H Jin, J Lee, T S Kim, S H Hong, S Jeon. Enhanced mechanical properties of graphene/ copper nanocomposites using a molecular-level mixing process. Adv Mater 25(46): 6724-6729 (2013)
[38]
A Naseer, F Ahmad, M Aslam, B H Guan, W S W Harun, N Muhamad, M R Raza, R M German. A review of processing techniques for graphene-reinforced metal matrix composites. Mater Manuf Processes 34(9): 957- 985 (2019)
[39]
H Zhang, L B Wang, A G Zhou, C L Shen, Y H Dai, F F Liu, J F Chen, P Li, Q K Hu. Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites. RSC Adv 6(90): 87341-87352 (2016)
[40]
A Sorrentino, C Altavilla, M Merola, A Senatore, P Ciambelli, S Iannace. Nanosheets of MoS2-oleylamine as hybrid filler for self-lubricating polymer composites: Thermal, tribological, and mechanical properties. Polym Compos 36(6): 1124-1134 (2015)
[41]
Q Xiao, W H Han, R Yang, Y You, R B Wei, X B Liu. Mechanical, dielectric, and thermal properties of polyarylene ether nitrile and boron nitride nanosheets composites. Polym Compos 39(S3): E1598-E1605 (2018)
[42]
W Dai, J H Yu, Y Wang, Y Z Song, H Bai, K Nishimura, H W Liao, N Jiang. Enhanced thermal and mechanical properties of polyimide/graphene composites. Macromol Res 22(9): 983-989 (2014)
[43]
D G Papageorgiou, M F Liu, Z L Li, C Vallés, R J Young, I A Kinloch. Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets. Compos Sci Technol 175: 60- 68 (2019)
[44]
Z Cao, X D Wang, J L Li, Y Wu, H P Zhang, J Q Guo, S Q Wang. Reinforcement with graphene nanoflakes in titanium matrix composites. J Alloys Compd 696: 498- 502 (2017)
[45]
F Y Chen, J M Ying, Y F Wang, S Y Du, Z P Liu, Q Huang. Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96: 836-842 (2016)
[46]
S J Yan, S L Dai, X Y Zhang, C Yang, Q H Hong, J Z Chen, Z M Lin. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng: A 612: 440-444 (2014)
[47]
L C Tang, Y J Wan, D Yan, Y B Pei, L Zhao, Y B Li, L B Wu, J X Jiang, G Q Lai. The effect of graphene dispersion on the mechanical properties of graphene/ epoxy composites. Carbon 60: 16-27 (2013)
[48]
Y Wang, Z X Shi, J Yin. Boron nitridenanosheets: Large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem 21(30): 11371-11377 (2011)
[49]
G S Shao, P Liu, K Zhang, W Li, X H Chen, F C Ma. Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering. Mater Sci Eng: A 739: 329-334 (2019)
[50]
A Kumar, S M Zo, J H Kim, S C Kim, S S Han. Enhanced physical, mechanical, and cytocompatibility behavior of polyelectrolyte complex hydrogels by reinforcing halloysite nanotubes and graphene oxide. Compos Sci Technol 175: 35-45 (2019)
[51]
Y Wang, Z X Shi, J H Fang, H J Xu, X D Ma, J Yin. Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites. J Mater Chem 21(2): 505-512 (2011)
[52]
X M Feng, X Wang, W Y Xing, K Q Zhou, L Song, Y Hu. Liquid-exfoliated MoS2 by chitosan and enhanced mechanical and thermal properties of chitosan/MoS2 composites. Compos Sci Technol 93: 76-82 (2014)
[53]
G P Tandon, G J Weng. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4): 327-333 (1984)
[54]
J C H Affdl, J Kardos. The Halpin-Tsai equations: A review. Polym Eng Sci 16(5): 344-352 (1976)
[55]
X Zhao, Q H Zhang, D J Chen, P Lu. Enhanced mechanical properties of graphene-based Poly(vinyl alcohol) composites. Macromolecules 43(5): 2357- 2363 (2010)
[56]
P K Sandhya, M S Sreekala, M Padmanabhan, K Jesitha, S Thomas. Effect of starch reduced graphene oxide on thermal and mechanical properties of phenol formaldehyde resin nanocomposites. Compos Part B: Eng 167: 83-92 (2019)
[57]
K N Spanos, N K Anifantis. Mechanical characterization of hexagonal boron nitride nanocomposites: A multiscale finite element prediction. J Compos Mater 52(16): 2229- 2241 (2017)
[58]
Z X Guo, L B Song, G B Chai, Z G Li, Y C Li, Z H Wang. Multiscale finite element analyses on mechanical properties of graphene-reinforced composites. Mech Adv Mater Struc 26(20): 1735-1742 (2018)
[59]
A Verma, A Parashar, M Packirisamy. Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl Surf Sci 470: 1085- 1092 (2019)
[60]
J M Zhan, X H Yao, W H Li, X Q Zhang. Tensile mechanical properties study of SiC/graphene composites based on molecular dynamics. Comp Mater Sci 131: 266-274 (2017)
[61]
D R Klimek-McDonald, J A King, I Miskioglu, E J Pineda, G M Odegard. Determination and modeling of mechanical properties for graphene nanoplatelet/ epoxy composites. Polym Compos 39(6): 1845-1851 (2018)
[62]
S C Shiu, J L Tsai. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos Part B: Eng 56: 691-697 (2014)
[63]
G M Dai, L Mishnaevsky Jr. Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Comp Mater Sci 95: 684-692 (2014)
[64]
S Lee, J Y Hong, J Jang. The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polym Int 62(6): 901-908 (2013)
[65]
B Das, K Eswar Prasad, U Ramamurty, C N R Rao. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20(12): 125705 (2009)
[66]
B Y Du, O K C Tsui, Q L Zhang, T B He. Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy. Langmuir 17(11): 3286- 3291 (2001)
[67]
Z Yan, X L Shi, Y C Huang, X B Deng, X Y Liu, K Yang. Tribological performance of Ni3Al matrix self-lubricating composites containing multilayer graphene prepared by additive manufacturing. J Mater Eng Perform 27(1): 167-175 (2018)
[68]
L G Zhang, H M Qi, G T Li, D A Wang, T M Wang, Q H Wang, G Zhang. Significantly enhanced wear resistance of PEEK by simply filling with modified graphitic carbon nitride. Mater Design 129: 192-200 (2017)
[69]
J P Salvetat-Delmotte, A Rubio. Mechanical properties of carbon nanotubes: A fiber digest for beginners. Carbon 40(10): 1729-1734 (2002)
[70]
M F Ashby. Overview No. 80: On the engineering properties of materials. Acta Metall 37(5): 1273-1293 (1989)
[71]
L B Zhang, JQ Wang, HG Wang, Y Xu, Z F Wang, Z P Li, Y J Mi, S R Yang. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos Part A: Appl Sci Manuf 43(9): 1537-1545 (2012)
[72]
S Vadukumpully, J Paul, N Mahanta, S Valiyaveettil. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1): 198-205 (2011)
[73]
X Wang, W Y Xing, X M Feng, B Yu, L Song, G H Yeoh, Y Hu. Enhanced mechanical and barrier properties of polyurethane nanocomposite films with randomly distributed molybdenum disulfide nanosheets. Compos Sci Technol 127: 142-148 (2016)
[74]
J Suh, D Bae. Mechanical properties of polytetra-fluoroethylene composites reinforced with graphene nanoplatelets by solid-state processing. Compos Part B: Eng 95: 317-323 (2016)
[75]
W L Wang, G X Sun, Y F Chen, X M Sun, J Q Bi. Preparation and mechanical properties of boron nitride nanosheets/alumina composites. Ceram Int 44(17): 21993-21997 (2018)
[76]
L Q Jiang, H A Xie, Y Hou, S Wang, Y S Xia, Y Li, G H Hu, Q L Yang, C X Xiong, Z D F Gao. Enhanced piezoelectricity of a PVDF-based nanocomposite utilizing high-yield dispersions of exfoliated few-layer MoS2. Ceram Int 45(9): 11347-11352 (2019)
[77]
D D Zhang, Z J Zhan. Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties. J Alloys Compd 658: 663-671 (2016)
[78]
Z Q Duan, Y T Liu, X M Xie, X Y Ye. A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties. Chin Chem Lett 24(1): 17-19 (2013)
[79]
M S R N Kiran, K Raidongia, U Ramamurty, C N R Rao. Improved mechanical properties of polymer nanocomposites incorporating graphene-like BN: Dependence on the number of BN layers. Scripta Mater 64(6): 592-595 (2011)
[80]
M Krystek, D Pakulski, V Patroniak, M Górski, L Szojda, A Ciesielski, P Samorì. High-performance graphene-based cementitious composites. Adv Sci 6(9): 1801195 (2019)
[81]
H Asgharzadeh, M Sedigh. Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide. J Alloys Compd 728: 47-62 (2017)
[82]
R Saggar, H Porwal, P Tatarko, I Dlouhý, M J Reece. Boron nitride nanosheets reinforced glass matrix composites. Adv Appl Ceram 114(S1): S26-S33 (2015)
[83]
U Khan, P May, A O'Neill, A P Bell, E Boussac, A Martin, J Semple, J N Coleman. Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. Nanoscale 5(2): 581-587 (2013)
[84]
K Q Zhou, S H Jiang, C L Bao, L Song, B B Wang, G Tang, Y Hu, Z Gui. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): Structural characteristics and markedly enhanced properties. RSC Adv 2(31): 11695-11703 (2012)
[85]
S D Jiang, G Tang, Z M Bai, Y Y Wang, Y Hu, L Song. Surface functionalization of MoS2 with POSS for enhancing thermal, flame-retardant and mechanical properties in PVA composites. RSC Adv 4(7): 3253- 3262 (2014)
[86]
L Liu, Z G Shen, Y T Zheng, M Yi, X J Zhang, S L Ma. Boron nitride nanosheets with controlled size and thickness for enhancing mechanical properties and atomic oxygen erosion resistance. RSC Adv 4(71): 37726-37732 (2014)
[87]
W J Meng, Y Huang, Y Q Fu, Z F Wang, C Y Zhi. Polymer composites of boron nitride nanotubes and nanosheets. J Mater Chem C 2(47): 10049-10061 (2014)
[88]
Z H Cui, A P Martinez, D H Adamson. PMMA functionalized boron nitride sheets as nanofillers. Nanoscale 7(22): 10193-10197 (2015)
[89]
D D Zhang, Z J Zhan. Experimental investigation of interfaces in graphene materials/copper composites from a new perspective. RSC Adv 6(57): 52219-52226 (2016)
[90]
O S Kwon, D Lee, S P Lee, Y G Kang, N C Kim, S H Song. Enhancing the mechanical and thermal properties of boron nitride nanoplatelets/elastomer nanocomposites by latex mixing. RSC Adv 6(65): 59970-59975 (2016)
[91]
C Zhao. Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications. Appl Phys A 118(2): 409-416 (2015)
[92]
H P Zhang, C Xu, W L Xiao, K Ameyama, C L Ma. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng: A 658: 8-15 (2016)
[93]
Z H Yu, W S Yang, C Zhou, N B Zhang, Z L Chao, H Liu, Y F Cao, Y Sun, P Z Shao, G H Wu. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method. Carbon 141: 25-39 (2019)
[94]
H Y Xia, X Zhang, Z Q Shi, C J Zhao, Y F Li, J P Wang, G J Qiao. Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites. Mater Sci Eng: A 639: 29-36 (2015)
[95]
J K Wu, C C Ye, T Liu, Q F An, Y H Song, K R Lee, W S Hung, C J Gao. Synergistic effects of CNT and GO on enhancing mechanical properties and separation performance of polyelectrolyte complex membranes. Mater Design 119: 38-46 (2017)
[96]
F Z Wang, L T Drzal, Y Qin, Z X Huang. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50(3): 1082- 1093 (2015)
[97]
X Wang, H Y Yang, L Song, Y Hu, W Y Xing, H D Lu. Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72(1): 1-6 (2011)
[98]
Y J Wan, L X Gong, L C Tang, L B Wu, J X Jiang. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A: Appl Sci Manuf 64: 79-89 (2014)
[99]
Y X Tang, X M Yang, R R Wang, M X Li. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids. Mater Sci Eng: A 599: 247-254 (2014)
[100]
D Lee, S H Song, J Hwang, S H Jin, K H Park, B H Kim, S H Hong, S Jeon. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 9(15): 2602-2610 (2013)
[101]
X L Zhao, S H Qi, J J Liu, X Han, F Zhang. Preparation and mechanical performances of carbon fiber reinforced epoxy composites by Mxene nanosheets coating. J Mater Sci: Mater Electron 30(11): 10516-10523 (2019)
[102]
R Surudžić, A Janković, N Bibić, M Vukašinović-Sekulić, A Perić-Grujić, V Mišković-Stanković, S J Park, K Y Rhee. Physico-chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/ graphene nanocomposites obtained by electrochemical method. Compos Part B: Eng 85: 102-112 (2016)
[103]
T Rodenas, I Luz, G Prieto, B Seoane, H Miro, A Corma, F Kapteijn, I X F X Llabrés, J Gascon. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14(1): 48-55 (2015)
[104]
M H Al-Saleh, U Sundararaj. Review of the mechanical properties of carbon nanofiber/polymer composites. Compos Part A: Appl Sci Manuf 42(12): 2126-2142 (2011)
[105]
C Elanchezhian, B V Ramnath, G Ramakrishnan, M Rajendrakumar, V Naveenkumar, M K Saravanakumar. Review on mechanical properties of natural fiber composites. Mater Today: Proc 5(1): 1785-1790 (2018)
[106]
M D Frogley, D Ravich, H D Wagner. Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63(11): 1647-1654 (2003)
[107]
A C Balazs, T Emrick, T P Russell. Nanoparticle polymer composites: Where two small worlds meet. Science 314(5802): 1107-1110 (2006)
[108]
L Zhang, G X Xie, S Wu, S G Peng, X Q Zhang, D Guo, S Z Wen, J B Luo. Ultralow friction polymer composites incorporated with monodispersed oil microcapsules. Friction, in press, .
[109]
Y Zhao, B Liu, C You, M F Chen. Effects of MgO whiskers on mechanical properties and crystallization behavior of PLLA/MgO composites. Mater Design 89: 573-581 (2016)
[110]
X C Wang, R F Song, Y J Chen, Y H Zhao, K Y Zhu, X Y Yuan. Mechanical properties of polypropylene by diversely compatibilizing with titanate whiskers in composites. Compos Sci Technol 164: 103-109 (2018)
[111]
R Verdejo, M M Bernal, L J Romasanta, M A Lopez-Manchado. Graphene filled polymer nanocomposites. J Mater Chem 21(10): 3301-3310 (2011)
[112]
M W Ahmad, B Dey, G Sarkhel, D S Bag, A Choudhury. Exfoliated graphene reinforced polybenzimidazole nanocomposite with improved electrical, mechanical and thermal properties. Mater Chem Phys 223: 426-433 (2019)
[113]
L Y Zhang, S H Tu, H T Wang, Q G Du. Preparation of polymer/graphene oxide nanocomposites by a two-step strategy composed of in situ polymerization and melt processing. Compos Sci Technol 154: 1-7 (2018)
[114]
M T Song, J Yang, S Kitipornchai. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Part B: Eng 134: 106-113 (2018)
[115]
Y J Ren, Y F Zhang, H M Fang, T P Ding, J L Li, S L Bai. Simultaneous enhancement on thermal and mechanical properties of polypropylene composites filled with graphite platelets and graphene sheets. Compos Part A: Appl Sci Manuf 112: 57-63 (2018)
[116]
X D Zhang, J G Xu, H Wang, J J Zhang, H B Yan, B C Pan, J F Zhou, Y Xie. Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angew Chem Int Ed Engl 52(16): 4361-4365 (2013)
[117]
M A Rafiee, J Rafiee, Z Wang, H H Song, Z Z Yu, N Koratkar. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12): 3884-3890 (2009)
[118]
C Bora, P Gogoi, S Baglari, S K Dolui. Preparation of polyester resin/graphene oxide nanocomposite with improved mechanical strength. J Appl Polym Sci 129(6): 3432-3438 (2013)
[119]
D Y Cai, J Jin, K Yusoh, R Rafiq, M Song. High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72(6): 702-707 (2012)
[120]
Y Liu, H Wu, G H Chen. Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling. Polym Compos 37(4): 1190-1197 (2016)
[121]
C Z Liu, S B Ye, J C Feng. Promoting the dispersion of graphene and crystallization of poly (lactic acid) with a freezing-dried graphene/PEG masterbatch. Compos Sci Technol 144: 215-222 (2017)
[122]
C B Hatter, J Shah, B Anasori, Y Gogosi. Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Compos Part B: Eng 182: 107603 (2020)
[123]
L Jiang, X P Shen, J L Wu, K C Shen. Preparation and characterization of graphene/poly(vinyl alcohol) na-nocomposites. J Appl Polym Sci 118(1): 275-279 (2010)
[124]
P Sobolčiak, A Ali, M K Hassan, M I Helal, A Tanvir, A Popelka, M A Al-Maadeed, K I Krupa, K A Mahmoud. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS One 12(8): e0183705 (2017)
[125]
S A Mirkhani, A Shayesteh Zeraati, E Aliabadian, M Naguib, U Sundararaj. High dielectric constant and low dielectric loss via Poly(vinyl alcohol)/Ti3C2Tx MXene nanocomposites. ACS Appl Mater Interfaces 11(20): 18599-18608 (2019)
[126]
R J Young, M F Liu, I A Kinloch, S H Li, X Zhao, C Vallés, D G Papageorgiou. The mechanics of reinforcement of polymers by graphene nanoplatelets. Compos Sci Technol 154: 110-116 (2018)
[127]
P May, U Khan, A O'Neill, J N Coleman. Approaching the theoretical limit for reinforcing polymers with graphene. J Mater Chem 22(4): 1278-1282 (2012)
[128]
Q Peng, W Ji, S De. Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comp Mater Sci 56: 11-17 (2012)
[129]
S Wu, F He, G X Xie, Z L Bian, Y L Ren, X Y Liu, H J Yang, D Guo, L Zhang, S Z Wen, J B Luo, Super-slippery degraded black phosphorus/silicon dioxide interface. ACS Appl Mater Inter 12(6): 7717-7726 (2020)
[130]
J Li, Y H Yin, Y Muhammad, J Yang, S Yang, H Q Yang, M Sahibzada. Preparation and properties of modified graphene oxide incorporated waterborne polyurethane acrylate. Polym Int 68(6): 1091-1101 (2019)
[131]
M Fang, K G Wang, H B Lu, Y L Yang, S Nutt. Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites. J Mater Chem 19(38): 7098-7105 (2009)
[132]
L Zhang, Y F Li, H H Wang, Y D Qiao, J Z Chen, S K Cao. Strong and ductile poly(lactic acid) nanocomposite films reinforced with alkylated graphene nanosheets. Chem Eng J 264: 538-546 (2015)
[133]
W H Liao, S Y Yang, S T Hsiao, Y S Wang, S M Li, C C M Ma, H W Tien, S J Zeng. Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Appl Mater Interfaces 6(18): 15802-15812 (2014)
[134]
X Y Ye, P W Gong, J Q Wang, H G Wang, S L Ren, S R Yang. Fluorinated graphene reinforced polyimide films with the improved thermal and mechanical properties. Compos Part A: Appl Sci Manuf 75: 96- 103 (2015)
[135]
Y M Chen, X Gao, J L Wang, W He, V V Silberschmidt, S X Wang, Z H Tao, H Xu. Properties and application of polyimide-based composites by blending surface functionalized boron nitride nanoplates. J Appl Polym Sci 132(16): 41889 (2015)
[136]
J Dong, C Q Yin, X Zhao, Y Z Li, Q H Zhang. High strength polyimide fibers with functionalized graphene. Polymer 54(23): 6415-6424 (2013)
[137]
F Qiu, Y B Hao, X Y Li, B Wang, M Wang. Functionalized graphene sheets filled isotactic polypropylene nanocomposites. Compos Part B: Eng 71: 175-183 (2015)
[138]
L X Xing, Q Li, G Z Zhang, X S Zhang, F H Liu, L Liu, Y D Huang, Q Wang. Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities. Adv Funct Mater 26(20): 3524-3531 (2016)
[139]
M T Chen, T Tao, L Zhang, W Gao, C Z Li. Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chem Commun 49(16): 1612-1614 (2013)
[140]
Z L Li, J W Chu, C Yang, S J Hao, M A Bissett, I A Kinloch, R J Young. Effect of functional groups on the agglomeration of graphene in nanocomposites. Compos Sci Technol 163: 116-122 (2018)
[141]
O F Damnalı,, V Eskizeybek. Synergistic impact of graphene and carbon nanotubes on waste paper for hybrid nanocomposite substrates. Cellulose 26(6): 3935-3954 (2019)
[142]
V B Mohan, R Brown, K Jayaraman, D Bhattacharyya. Optimisation of hybridisation effect in graphene reinforced polymer nanocomposites. Adv Compos Mater 27(4): 349-365 (2018)
[143]
X L Cui, P Ding, N Zhuang, L Y Shi, N Song, S F Tang. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: A morphology-promoted synergistic effect. ACS Appl Mater Interfaces 7(34): 19068-19075 (2015)
[144]
S Wu, F He, G X Xie, Z L Bian, J B Luo, S Z Wen. Black phosphorus: Degradation favors lubrication. Nano Lett 18(9): 5618-5627 (2018)
[145]
Z Z Zhang, M M Yang, J Y Yuan, F Guo, X H Men. Friction and wear behaviors of MoS2-multi-walled-carbonnanotube hybrid reinforced polyurethane composite coating. Friction 7(4): 316-326 (2019)
[146]
G L Zhang, G X Xie, L N Si, S Z Wen, D Guo. Ultralow friction self-lubricating nanocomposites with mesoporous metal-organic frameworks as smart nanocontainers for lubricants. ACS Appl Mater Interfaces 9(43): 38146- 38152 (2017)
[147]
S G Peng, Y Guo, G X Xie, J B Luo. Tribological behavior of polytetrafluoroethylene coating reinforced with black phosphorus nanoparticles. Appl Surf Sci 441: 670-677 (2018)
[148]
S Bhargava, N Koratkar, T A Blanchet. Effect of platelet thickness on wear of graphene-polytetrafluoroethylene (PTFE) composites. Tribol Lett 59(1): 17 (2015)
[149]
S Li, C J Duan, X Li, M C Shao, C H Qu, D Zhang, Q H Wang, T M Wang, X R Zhang. The effect of different layered materials on the tribological properties of PTFE composites. Friction 8(3): 542-552 (2020)
[150]
Y Lv, W Wang, G X Xie, J B Luo. Self-lubricating PTFE-based composites with black phosphorus nanosheets. Tribol Lett 66(2): 61 (2018)
[151]
J Chen, B Chen, J Y Li, X Tong, H C Zhao, L P Wang. Enhancement of mechanical and wear resistance performance in hexagonal boron nitride-reinforced epoxy nanocomposites. Polym Int 66(5): 659-664 (2017)
[152]
Y J Min, K H Kang, D E Kim. Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications. Nano Res 11(5): 2366-2378 (2018)
[153]
M M Yang, Z Z Zhang, X T Zhu, X H Men, G N Ren. In situ reduction and functionalization of graphene oxide to improve the tribological behavior of a phenol formaldehyde composite coating. Friction 3(1): 72-81 (2015)
[154]
S L Qiu, Y X Hu, Y Q Shi, Y B Hou, Y C Kan, F K Chu, H B Sheng, R K K Yuen, W Y Xing. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Compos Part A: Appl Sci Manuf 114: 407-417 (2018)
[155]
Z Y Chen, H X Yan, L L Guo, L Li, P F Yang, B Liu. A novel polyamide-type cyclophosphazene functionalized rGO/WS2 nanosheets for bismaleimide resin with enhanced mechanical and tribological properties. Compos Part A: Appl Sci Manuf 121: 18-27 (2019)
[156]
H Zhang, L B Wang, Q Chen, P Li, A G Zhou, X X Cao, Q K Hu. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater Design 92: 682-689 (2016)
[157]
S S Kandanur, M A Rafiee, F Yavari, M Schrameyer, Z Z Yu, T A Blanchet, N Koratkar. Suppression of wear in graphene polymer composites. Carbon 50(9): 3178- 3183 (2012)
[158]
D Lahiri, F Hec, M Thiesse, A Durygin, C Zhang, A Agarwal. Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites. Tribol Int 70: 165-169 (2014)
[159]
J Zhao, G Y Chen, Y Y He, S X Li, Z Q Duan, Y R Li, J B Luo. A novel route to the synthesis of an Fe3O4/ h-BN 2D nanocomposite as a lubricant additive. RSC Adv 9(12): 6583-6588 (2019)
[160]
Z Xu, W J Lou, G Q Zhao, Q Zhao, N Xu, J Y Hao, X B Wang. Preparation of WS2 nanocomposites via mussel-inspired chemistry and their enhanced dispersion stability and tribological performance in polyalkylene glycol. J Dispersion Sci Technol 40(5): 737-744 (2019)
[161]
F Chen, D Q Jin, K Tyeb, B T Wang, Y H Han, S Kim, J M Schoenung, Q Shen, L M Zhang. Field assisted sintering of graphene reinforced zirconia ceramics. Ceram Int 41(4): 6113-6116 (2015)
[162]
Y C Fan, G Igarashi, W Jiang, L J Wang, A Kawasaki. Highly strain tolerant and tough ceramic composite by incorporation of graphene. Carbon 90: 274-283 (2015)
[163]
X Liu, Y C Fan, J L Li, L J Wang, W Jiang. Preparation and mechanical properties of graphene nanosheet reinforced alumina composites. Adv Eng Mater 17(1): 28-35 (2015)
[164]
Z Pan, L He, L Qiu, A H Korayem, G Li, J W Zhu, F Collins, D Li, W H Duan, M C Wang. Mechanical properties and microstructure of a graphene oxide-cement composite. Cem Concr Compos 58: 140-147 (2015)
[165]
P Rutkowski, L Stobierski, D Zientara, L Jaworska, P Klimczyk, M Urbanik. The influence of the graphene additive on mechanical properties and wear of hot-pressed Si3N4 matrix composites. J Eur Ceram Soc 35(1): 87-94 (2015)
[166]
C Yun, Y B Feng, T Qiu, J Yang, X Y Li, L Yu. Mechanical, electrical, and thermal properties of graphene nanosheet/aluminum nitride composites. Ceram Int 41(7): 8643-8649 (2015)
[167]
X P Han, Y Huang, S H Zhou, X Sun, X Y Peng, X F Chen. Effects of graphene content on thermal and mechanical properties of chromium-coated graphite flakes/Si/Al composites. J Mater Sci: Mater Electron 29(5): 4179- 4189 (2018)
[168]
R Cano-Crespo, B M Moshtaghioun, D Gómez-García, R Moreno, A Domínguez-Rodríguez. Graphene or carbon nanofiber-reinforced zirconia composites: Are they really worthwhile for structural applications? J Eur Ceram Soc 38(11): 3994-4002 (2018)
[169]
Z B Yin, J T Yuan, W W Xu, K Liu, S Y Yan. Graphene nanosheets toughened TiB2-based ceramic tool material by spark plasma sintering. Ceram Int 44(8): 8977- 8982 (2018)
[170]
Y M An, X H Xu, K X Gui. Effect of SiC whiskers and graphene nanosheets on the mechanical properties of ZrB2 -SiCw-Graphene ceramic composites. Ceram Int 42(12): 14066-14070 (2016)
[171]
K Markandan, J K Chin, M T T Tan. Recent progress in graphene based ceramic composites: A review. J Mater Res 32(1): 84-106 (2017)
[172]
A Nieto, A Bisht, D Lahiri, C Zhang, A Agarwal. Graphene reinforced metal and ceramic matrix composites: A review. Int Mater Rev 62(5): 241-302 (2017)
[173]
M Birenboim, R Nadiv, A Alatawna, M Buzaglo, G Schahar, J Lee, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites. Compos Part B: Eng 161: 68-76 (2019)
[174]
Y J Li, B Z Ge, Z H Wu, G Q Xiao, Z Q Shi, Z H Jin. Effects of h-BN on mechanical properties of reaction bonded β-SiAlON/h-BN composites. J Alloys Compd 703: 180-187 (2017)
[175]
Q Li, D L Cai, Z H Yang, X M Duan, D X Li, Y S Sun, S J Wang, D C Jia, B Joachim, Y Zhou. Effects of BN on the microstructural evolution and mechanical properties of BAS-BN composites. Ceram Int 45(2): 1627-1633 (2019)
[176]
M M Fei, R Z Lin, Y W Lu, X L Zhang, R J Bian, J G Cheng, P F Luo, C X Xu, D Y Cai. MXene-reinforced alumina ceramic composites. Ceram Int 43(18): 17206-17210 (2017)
[177]
J Guo, B Legum, B Anasori, K Wang, P Lelyukh, Y Gogotsi, C A Randall. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv Mater 30(32): 1801846 (2018)
[178]
M Belmonte, C Ramírez, J González-Julián, J Schneider, P Miranzo, M I Osendi. The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 61: 431-435 (2013)
[179]
H Porwal, P Tatarko, R Saggar, S Grasso, M Kumar Mani, I Dlouhý, J Dusza, M J Reece. Tribological properties of silica-graphene nano-platelet composites. Ceram Int 40(8): 12067-12074 (2014)
[180]
Z Y B Zeng, Y Z Liu, R R Guo, K L Li. Friction and wear behaviours of in situ reduced graphene oxide reinforced zirconia ceramic. Int J Refract Met Hard Mater 79: 164-170 (2019)
[181]
J Llorente, C Ramírez, M Belmonte. High graphene fillers content for improving the tribological performance of silicon nitride-based ceramics. Wear 430-431: 183-190 (2019)
[182]
Y F Su, Y S Zhang, J J Song, L T Hu. Novel approach to the fabrication of an alumina-MoS2 self-lubricating composite via the in situ synthesis of nanosized MoS2. ACS Appl Mater Interfaces 9(36): 30263-30266 (2017)
[183]
E C Serra, V F D Soares, D A R Fernandez, R Hübler, K R C Juste, C L Lima, E K Tentardini. Influence of WS2 content on high temperature wear performance of magnetron sputtered TiN-WSx thin films. Ceram Int 45(16): 19918-19924 (2019)
[184]
W L Zhang, C Schröder, B Schlüter, M Knoch, J Dusza, R Sedlák, R Mülhaupt, A Kailer. Effect of mechanochemically functionalized multilayer graphene on the tribological properties of silicon carbide/ graphene nanocomposites in aqueous environment. Tribol Lett 66(4): 121 (2018)
[185]
H J Kim, S M Lee, Y S Oh, Y H Yang, Y S Lim, D H Yoon, C Lee, J Y Kim, R S Ruoff. Unoxidized graphene/alumina nanocomposite: Fracture-and wear-resistance effects of graphene on alumina matrix. Sci Rep 4(1): 5176 (2015)
[186]
J Llorente, M Belmonte. Friction and wear behaviour of silicon carbide/graphene composites under isooctane lubrication. J Eur Ceram Soc 38(10): 3441-3446 (2018)
[187]
J Dutkiewicz, P Ozga, W Maziarz, J Pstruś, B Kania, P Bobrowski, J Stolarska. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets. Mater Sci Eng: A 628: 124-134 (2015)
[188]
M X Li, J Xie, Y D Li, H H Xu. Reduced graphene oxide dispersed in copper matrix composites: Facile preparation and enhanced mechanical properties. Phys Status Solidi A 212(10): 2154-2161 (2015)
[189]
X Gao, H Y Yue, E J Guo, H Zhang, X Y Lin, L H Yao, B Wang. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol 301: 601-607 (2016)
[190]
Y K Chen, X Zhang, E Z Liu, C N He, C S Shi, J J Li, P Nash, N Q Zhao. Fabrication of in-situ grown graphene reinforced Cu matrix composites. Sci Rep 6(1): 19363 (2016)
[191]
L D Wang, Z Y Yang, Y Cui, B Wei, S C Xu, J Sheng, M Wang, Y P Zhu, W D Fei. Graphene-copper composite with micro-layered grains and ultrahigh strength. Sci Rep 7(1): 41896 (2017)
[192]
M Rashad, F S Pan, Z W Yu, M Asif, H Lin, R J Pan. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog Nat Sci: Mater 25(5): 460-470 (2015)
[193]
Z Li, Q Guo, Z Q Li, G L Fan, D B Xiong, Y S Su, J Zhang, D Zhang. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett 15(12): 8077-8083 (2015)
[194]
B L Dasari, M Morshed, J M Nouri, D Brabazon, S Naher. Mechanical properties of graphene oxide reinforced aluminium matrix composites. Compos Part B: Eng 145: 136-144 (2018)
[195]
M Rashad, F S Pan, A T Tang, M Asif, J She, J Gou, J J Mao, H H Hu. Development of magnesium-graphene nanoplatelets composite. J Compos Mater 49(3): 285-293 (2015)
[196]
Z D Ren, N Meng, K Shehzad, Y Xu, S X Qu, B Yu, J K Luo. Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition. Nanotechnology 26(6): 065706 (2015)
[197]
Z S Xu, X L Shi, W Z Zhai, J Yao, S Y Song, Q X Zhang. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon 67: 168-177 (2014)
[198]
P Hidalgo-Manrique, X Z Lei, R Y Xu, M Y Zhou, I A Kinloch, R J Young. Copper/graphene composites: A review. J Mater Sci 54(19): 12236-12289 (2019)
[199]
V B Mohan, K T Lau, D Hui, D Bhattacharyya. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos Part B: Eng 142: 200-220 (2018)
[200]
Z Hu, G Tong, D Lin, C Chen, H Guo, J Xu, L Zhou. Graphene-reinforced metal matrix nanocomposites— A review. Mater Sci Technol 32(9): 930-953 (2016)
[201]
L Q Wu, R Z Wu, L G Hou, J H Zhang, M L Zhang. Microstructure, mechanical properties and wear performance of AZ31 matrix composites reinforced by graphene nanoplatelets(GNPs). J Alloys Compd 750: 530-536 (2018)
[202]
A Dorri Moghadam, E Omrani, P L Menezes, P K Rohatgi. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-A review. Compos Part B: Eng 77: 402-420 (2015)
[203]
M Rashad, F S Pan, H H Hu, M Asif, S Hussain, J She. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater Sci Eng: A 630: 36-44 (2015)
[204]
D B Xiong, M Cao, Q Guo, Z Q Tan, G L Fan, Z Q Li, D Zhang. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite. ACS Nano 9(7): 6934-6943 (2015)
[205]
Y Song, Y Chen, W W Liu, W L Li, Y G Wang, D Zhao, X B Liu. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater Design 109: 256-263 (2016)
[206]
D D Zhang, Z J Zhan. Strengthening effect of graphene derivatives in copper matrix composites. J Alloys Compd 654: 226-233 (2016)
[207]
S Kumar. Graphene engendered aluminium crystal growth and mechanical properties of its composite: An atomistic investigation. Mater Chem Phys 208: 41-48 (2018)
[208]
Y Z Wan, Y L Wang, H L Luo, X H Dong, G X Cheng. Effects of fiber volume fraction, hot pressing parameters and alloying elements on tensile strength of carbon fiber reinforced copper matrix composite prepared by continuous three-step electrodeposition. Mater Sci Eng: A 288(1): 26-33 (2000)
[209]
S I Cha, K T Kim, S N Arshad, C B Mo, S H Hong. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11): 1377-1381 (2005)
[210]
K Munir, C Wen, Y Li. Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications. J Magnes Alloy 8(1): 269-290 (2020)
[211]
K Chu, F Wang, Y B Li, X H Wang, D J Huang, Z R Geng. Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene. Compos Part A: Appl Sci Manuf 109: 267-279 (2018)
[212]
Z F Jia, H Q Li, Y Zhao, L Frazer, B S Qian, E Borguet, F Ren, D A Dikin. Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. J Mater Sci 52(19): 11620-11629 (2017)
[213]
X Y Zhao, J C Tang, F X Yu, N Ye. Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition. J Alloys Compd 766: 266-273 (2018)
[214]
M Arab, S P H Marashi. Effect of graphene nanoplatelets (GNPs) content on improvement of mechanical and tribological properties of AZ31 Mg matrix nanocomposite. Tribol Int 132: 1-10 (2019)
[215]
N Khobragade, K Sikdar, B Kumar, S Bera, D Roy. Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. J Alloys Compd 776: 123-132 (2019)
[216]
K Chu, Y P Liu, J Wang, Z R Geng, Y B Li. Oxygen plasma treatment for improving graphene distribution and mechanical properties of graphene/copper composites. Mater Sci Eng: A 735: 398-407 (2018)
[217]
Y B Zhao, X H Peng, T Fu, X F Zhu, N Hu, C Yan. Strengthening mechanisms of graphene coated copper under nanoindentation. Comp Mater Sci 144: 42-49 (2018)
[218]
X Gao, H Y Yue, E J Guo, H Zhang, X Y Lin, L H Yao, B Wang. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater Design 94: 54-60 (2016)
[219]
K Fu, X Zhang, C S Shi, E Z Liu, F He, J J Li, N Q Zhao, C N He. An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties. Mater Sci Eng: A 715: 108-116 (2018)
[220]
X Gao, H Y Yue, E J Guo, S L Zhang, L H Yao, X Y Lin, B Wang, E H Guan. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets. J Mater Sci Technol 34(10): 1925-1931 (2018)
[221]
S Zhang, T B Ma, A Erdemir, Q Y Li. Tribology of two-dimensional materials: From mechanisms to modulating strategies. Mater Today 26: 67-86 (2019)
[222]
Y J Mai, Y G Li, S L Li, L Y Zhang, C S Liu, X H Jie. Self-lubricating Ti3C2 nanosheets/copper composite coatings. J Alloys Compd 770: 1-5 (2019)
[223]
S Y Wang, S B Han, G Q Xin, J L Lin, R H Wei, J Lian, K Sun, X T Zu, Q K Yu. High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites. Mater Design 139: 181-187 (2018)
[224]
Y J Mai, F X Chen, W Q Lian, L Y Zhang, C S Liu, X H Jie. Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets. J Alloys Compd 756: 1-7 (2018)
[225]
Y Lei, J L Jiang, T T Bi, J F Du, X J Pang. Tribological behavior of in situ fabricated graphene-nickel matrix composites. RSC Adv 8(39): 22113-22121 (2018)
[226]
J Wozniak, M Kostecki, T Cygan, M Buczek, A Olszyna. Self-lubricating aluminium matrix composites reinforced with 2D crystals. Compos Part B: Eng 111: 1-9 (2017)
[227]
A Loganathan, S Rengifo, A F Hernandez, Y Emirov, C Zhang, B Boesl, J Karthikeyan, A Agarwal. Effect of 2D WS2 addition on cold-sprayed aluminum coating. J Therm Spray Technol 26(7): 1585-1597 (2017)
[228]
W Z Zhai, X L Shi, J Yao, A M M Ibrahim, Z S Xu, Q S Zhu, Y C Xiao, L Chen, Q X Zhang. Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites. Compos Part B: Eng 70: 149-155 (2015)
[229]
W Z Zhai, N Srikanth, L B Kong, K Zhou. Carbon nanomaterials in tribology. Carbon 119: 150-171 (2017)
[230]
J F Wang, X X Jin, C H Li, W J Wang, H Wu, S Y Guo. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength. Chem Eng J 370: 831-854 (2019)
[231]
A Hussein, B Kim. Graphene/polymer nanocomposites: The active role of the matrix in stiffening mechanics. Compos Struct 202: 170-181 (2018)
[232]
T Huang, Y S Xin, T S Li, S Nutt, C Su, H M Chen, P Liu, Z L Lai. Modified graphene/polyimide nanocomposites: Reinforcing and tribological effects. ACS Appl Mater Interfaces 5(11): 4878-4891 (2013)
[233]
Y L Li, S J Wang, Q Wang, M Xing. A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos Part B: Eng 133: 35-41 (2018)
[234]
J T Hu, Y Huang, X L Zeng, Q Li, L L Ren, R Sun, J B Xu, C P Wong. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos Sci Technol 160: 127-137 (2018)
[235]
M M Fei, R Z Lin, Y M Deng, H X Xian, R J Bian, X L Zhang, J G Cheng, C X Xu, D Y Cai. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells. Nanotechnology 29(3): 035403 (2018)
[236]
M B Khan, R Jan, A Habib, A N Khan. Evaluating mechanical properties of few layers MoS2 nanosheets-polymer composites. Adv Mater Sci Eng 2017: 3176808 (2017)
[237]
M F Liu, D G Papageorgiou, S H Li, K L Lin, I A Kinloch, R J Young. Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Compos Part A: Appl Sci Manuf 110: 84-92 (2018)
[238]
H M Fang, S L Bai, C P Wong. Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application. Compos Part A: Appl Sci Manuf 100: 71-80 (2017)
[239]
H B Luo, Y W Sui, J Q Qi, Q K Meng, F X Wei, Y Z He. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles. J Alloys Compd 729: 293-302 (2017)
[240]
U Khan, P May, A O’Neill, J N Coleman. Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48(14): 4035-4041 (2010)
[241]
A O’Neill, U Khan, J N Coleman. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem Mater 24(12): 2414-2421 (2012)
[242]
X Y Ren, X Yang, G X Xie, J B Luo. Black Phosphorus Quantum Dots in Aqueous Ethylene Glycol for Macroscale Superlubricity. ACS Appl Nano Mater, in Press, .
[243]
J A King, D R Klimek, I Miskioglu, G M Odegard. Mechanical properties of graphene nanoplatelet/epoxy composites. J Compos Mater 49(6): 659-668 (2015)
[244]
S V Polschikov, P M Nedorezova, A N Klyamkina, A A Kovalchuk, A M Aladyshev, A N Shchegolikhin, V G Shchegolikhin, V E Muradyan. Composite materials of graphene nanoplatelets and polypropylene, prepared by in situ polymerization. J Appl Polym Sci 127(2): 904-911 (2013)
[245]
P Costa, J Nunes-Pereira, J Oliveira, J Silva, J A Moreira, S A C Carabineiro, J G Buijnsters, S Lanceros-Mendez. High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos Sci Technol 153: 241-252 (2017)
[246]
P G Ren, Y Y Di, Q Zhang, L Li, H Pang, Z M Li. Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: Preparation and properties. Macromol Mater Eng 297(5): 437-443 (2012)
[247]
Y C Yang, W Rigdon, X Y Huang, X D Li. Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Sci Rep 3(1): 2086 (2013)
[248]
R R Jiang, X F Zhou, Q L Fang, Z P Liu. Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties. Mater Sci Eng: A 654: 124-130 (2016)
[249]
N V Ponraj, S C Vettivel, A Azhagurajan, X Sahaya Shajan, P Y Nabhiraj, T Theivasanthi, P Selvakumar, A H Lenin. Effect of milling on dispersion of graphene nanosheet reinforcement in different morphology copper powder matrix. Surf Interfaces 9: 260-265 (2017)
[250]
A Saboori, S K Moheimani, M Dadkhah, M Pavese, C Badini, P Fino. An overview of key challenges in the fabrication of metal matrix nanocomposites reinforced by graphene nanoplatelets. Metals 8(3): 172 (2018)
[251]
Z L Li, R J Young, N R Wilson, I A Kinloch, C Vallés, Z Li. Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Compos Sci Technol 123: 125-133 (2016)
[252]
T Huang, R G Lu, C Su, H N Wang, Z Guo, P Liu, Z Y Huang, H M Chen, T S Li. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4(5): 2699-2708 (2012)
[253]
K Chu, F Wang, X H Wang, D J Huang. Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater Sci Eng: A 713: 269-277 (2018)
[254]
R Jan, P May, A P Bell, A Habib, U Khan, J N Coleman. Enhancing the mechanical properties of BN nanosheet-polymer composites by uniaxial drawing. Nanoscale 6(9): 4889-4895 (2014)
[255]
F Wang, H Y Wang, J Mao. Aligned-graphene composites: A review. J Mater Sci 54(1): 36-61 (2019)
[256]
J R Wu, G S Huang, H Li, S D Wu, Y F Liu, J Zheng. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 54(7): 1930- 1937 (2013)
[257]
Y L Zhang, Y Wang, J R Yu, L Chen, J Zhu, Z M Hu. Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55(19): 4990-5000 (2014)
[258]
S Chhetri, N C Adak, P Samanta, P K Mallisetty, N C Murmu, T Kuila. Interface engineering for the improvement of mechanical and thermal properties of covalent functionalized graphene/epoxy composites. J Appl Polym Sci 135(15): 46124 (2018)
[259]
H Chen, D Guo, G X Xie, G S Pan. Mechanical model of nanoparticles for material removal in chemical mechanical polishing process. Friction 4(2): 153-164 (2016)
[260]
M J Buehler, A Misra. Mechanical behavior of nanocomposites. MRS Bull 44(1): 19-24 (2019)
[261]
Z Y Lu, A Hanif, G X Sun, R Liang, P Parthasarathy, Z J Li. Highly dispersed graphene oxide electrodeposited carbon fiber reinforced cement-based materials with enhanced mechanical properties. Cem Concr Compos 87: 220-228 (2018)
[262]
L Chen, S G Chai, K Liu, N Y Ning, J Gao, Q F Liu, F Chen, Q Fu. Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl Mater Interfaces 4(8): 4398- 4404 (2012)
[263]
J J Lewandowski, M Seifi. Metal additive manufacturing: A review of mechanical properties. Annu Rev Mater Res 46(1): 151-186 (2016)
[264]
M Naguib, V N Mochalin, M W Barsoum, Y Gogotsi. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv Mater 26(7): 992- 1005 (2014)
[265]
S Das, D Pandey, J Thomas, T Roy. The role of graphene and other 2D materials in solar photovoltaics. Adv Mater 31(1): 1802722 (2018)
[266]
Z Y Wang, B X Mi. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 51(15): 8229-8244 (2017)
[267]
M G Campbell, D Sheberla, S F Liu, T M Swager, M Dincă. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew Chem Int Ed Engl 54(14): 4349-4352 (2015)
[268]
X W Yu, H H Cheng, M Zhang, Y Zhao, L T Qu, G Q Shi. Graphene-based smart materials. Nat Rev Mater 2(9): 17046 (2017)
[269]
A Hazarika, B K Deka, D Y Kim, H E Jeong, Y B Park, H W Park. Woven kevlar fiber/polydimethylsiloxane/ reduced graphene oxide composite-based personal thermal management with freestanding Cu-Ni core-shell nanowires. Nano Lett 18(11): 6731-6739 (2018)
[270]
I Vlassiouk, G Polizos, R Cooper, I Ivanov, J K Keum, F Paulauskas, P Datskos, S Smirnov. Strong and electrically conductive graphene-based composite fibers and laminates. ACS Appl Mater Interfaces 7(20): 10702-10709 (2015)
[271]
D Trache, M H Hussin, C T Hui Chuin, S Sabar, M R N Fazita, O F A Taiwo, T M Hassan, M K M Haafiz. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93: 789-804 (2016)
[272]
Y F Dong, Z S Wu, W C Ren, H M Cheng, X H Bao. Graphene: A promising 2D material for electrochemical energy storage. Sci Bull 62(10): 724-740 (2017)
[273]
C Cha, S R Shin, N Annabi, M R Dokmeci, A Khademhosseini. Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 7(4): 2891-2897 (2013)
[274]
S Goenka, V Sant, S Sant. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173: 75-88 (2014)
[275]
C Dai, H Lin, G Xu, Z Liu, R Wu, Y Chen. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-Responsive MRI-guided tumor hyperthermia. Chem Mater 29(20): 8637-8652 (2017)
[276]
X L Zhang, Y Xu, X Zhang, H Wu, J B Shen, R Chen, Y Xiong, J Li, S Y Guo. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog Polym Sci 89: 76-107 (2019)
[277]
X Q Yu, W S Zhang, P P Zhang, Z Q Su. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges. Biosens Bioelectron 89: 72-84 (2017)
[278]
J Yang, W Z Bao, P Jaumaux, S T Zhang, C Y Wang, G X Wang. MXene-based composites: Synthesis and applications in rechargeable batteries and superca-pacitors. Adv Mater Interfaces 6(8): 1802004 (2019)
[279]
Z S Wu, Z Y Liu, K Parvez, X L Feng, K Müllen. Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater 27(24): 3669- 3675 (2015)
[280]
Z Ling, C E Ren, M Q Zhao, J Yang, J M Giammarco, J S Qiu, M W Barsoum, Y Gogotsi. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA 111(47): 16676-16681 (2014)
[281]
P W Liu, A L Cottrill, D Kozawa, V B Koman, D Parviz, A T Liu, J F Yang, T Q Tran, M H Wong, S Wang, et al. Emerging trends in 2D nanotechnology that are redefining our understanding of “Nanocomposites”. Nano Today 21: 18-40 (2018)
[282]
W Wang, G X Xie, J B Luo. Superlubricity of black phosphorus as lubricant additive. ACS Appl Mater Inter 10(49): 43203-43210 (2018)
Friction
Pages 813-846
Cite this article:
JI Z, ZHANG L, XIE G, et al. Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction, 2020, 8(5): 813-846. https://doi.org/10.1007/s40544-020-0401-4

1161

Views

48

Downloads

98

Crossref

N/A

Web of Science

97

Scopus

7

CSCD

Altmetrics

Received: 29 November 2019
Revised: 20 March 2020
Accepted: 07 May 2020
Published: 11 June 2020
© The author(s) 2020

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return