AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Post-testing measurement of freely movable and diffusible hydrogen in context of WEC formation at cylindrical roller thrust bearings from 100Cr6

Martin LINZMAYER1( )Francisco GUTIÉRREZ GUZMÁN1Gregor MANKE2Georg JACOBS1Christopher SOUS1Michael POHL2
Institute for Machine Elements and System Engineering, RWTH Aachen University, Schinkelstrasse 10, Aachen 52062, Germany
Institute for Materials, Material Testing, Ruhr University Bochum, Universitätsstr 150, Bochum 44801, Germany
Show Author Information

Abstract

Sub-surface crack networks in areas of altered microstructure are a common cause for bearing failures. Due to its appearance under light microscopy, the damage pattern is referred to as White Etching Cracks (WEC). The root causes leading to the formation of WEC are still under debate. Nevertheless, it has already been shown that atomic hydrogen can have an accelerating effect on the formation and propagation of WEC. In addition to hydrogen pre-charging, hydrogen can be released and absorbed during rolling/sliding due to the decomposing of the lubricant and water. The current work focuses on the analysis of the hydrogen content of cylindrical roller thrust bearings after testing in a FE8 type test rig using two different lubricants. Within the framework of this work, two different hydrogen analysis methods were used and assessed regarding their applicability. The results show that the so-called Hydrogen Collecting Analysis (HCA) is more suitable to investigate the correlation between lubricant chemistry and hydrogen content in the test bearings than the Local Hydrogen Analysis (LHA). The measurements with the HCA show a continuously increasing freely movable and diffusible hydrogen content under tribological conditions, which leads to the formation of WEC. Comparative tests with an oil without hydrogen showed that the tendency of the system to fail as a result of WEC can be reduced by using a lubricant without hydride compounds.

References

[1]
Wälzlager - Dynamische Tragzahlen und nominelle Lebensdauer. Deutsche Norm DIN ISO 281. Beuth Verlag GmbH, Berlin (Deutschland), Okt. 2010.
[2]
Du Créhu A R. Tribological analysis of White Etching Crack (WEC) failures in rolling element bearings. Ph.D. Thesis. Lyon (France): INSA de Lyon, 2015.
[3]
Errichello R, Budny R, Eckert R. Investigations of bearing failures associated with white etching areas (WEAs) in wind turbine gearboxes. Tribol Trans 56(6): 1069-1076 (2013)
[4]
Tamada K, Tanaka H. Occurrence of brittle flaking on bearings used for automotive electrical instruments and auxiliary devices. Wear 199(2): 245-252 (1996)
[5]
Holweger W. Influence on bearing life by new material phenomena. In NREL-Wind Turbine Tribology Seminar, Broomfield, CO, USA, 2011.
[6]
Lai J B, Stadler K. Investigation on the mechanisms of white etching crack (WEC) formation in rolling contact fatigue and identification of a root cause for bearing premature failure. Wear 364-365: 244-256 (2016)
[7]
Holweger W. Progresses in solving White etching crack phenoma. In NREL-Gearbox Reliability Collaborative, Golden, CO, USA, 2014.
[8]
Gould B, Greco A, Stadler K, Vegter E, Xiao X H. Using advanced tomography techniques to investigate the development of White Etching Cracks in a prematurely failed field bearing. Tribol Int 116: 362-370 (2017)
[9]
Holweger W, Wolf M, Merk D, Blass T, Goss M, Loos J, Barteldes S, Jakovics A. White etching crack root cause investigations. Tribol Trans 58(1): 59-69 (2015)
[10]
Li S X, Su Y S, Shu X D, Chen J J. Microstructural evolution in bearing steel under rolling contact fatigue. Wear 380-381: 146-153 (2017)
[11]
Kino N, Otani K. The influence of hydrogen on rolling contact fatigue life and its improvement. JSAE Rev 24(3): 289-294 (2003)
[12]
Uyama H, Yamada H, Hidaka H, Mitamura N. The effects of hydrogen on microstructural change and surface originated flaking in rolling contact fatigue. Tribol Online 6(2): 123-132 (2011)
[13]
Richardson A D, Evans M H, Wang L, Wood R J K, Ingram M. Thermal desorption analysis of hydrogen in non-hydrogen-charged rolling contact fatigue-tested 100Cr6 STeel. Tribol Lett 66(1): 4 (2018)
[14]
Haque T, Korres S, Carey J T, Jacobs P W, Loos J, Franke J. Lubricant effects on white etching cracking failures in thrust bearing rig tests. Tribol Trans 61(6): 979-990 (2018)
[15]
Evans M H. An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater Sci Technol 32(11): 1133-1169 (2016)
[16]
Ciruna J A, Szieleit H J. The effect of hydrogen on the rolling contact fatigue life of AISI 52100 and 440C steel balls. Wear 24(1): 107-118 (1973)
[17]
Ray D, Vincent L, Coquillet B, Guirandenq P, Chene J, Aucouturier M. Hydrogen embrittlement of a stainless ball bearing steel. Wear 65(1): 103-111 (1980)
[18]
Iso K, Yokouchi A, Takemura H. Research work for clarifying the mechanism of white structure flaking and extending the life of bearings. In: SAE 2005 World Congress & Exhibition. Warrendale, United States, 2005.
[19]
Kohara M, Kawamura T, Egami M. Study on mechanism of hydrogen generation from lubricants. Tribol Trans 49(1): 53-60 (2006)
[20]
Diederichs A M, Schwedt A, Mayer J, Dreifert T. Electron microscopy analysis of structural changes within white etching areas. Mater Sci Technol 32(16): 1683-1693 (2016)
[21]
Hölzel M. Struktur und Gitterdynamik wasserstoffbeladener austenitischer Edelstähle. Ph.D. Thesis. Darmstadt (Germany): Technische Universität Darmstadt, 2004.
[22]
Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process. Acta Metall 36(10): 2639-2661 (1988)
[23]
Sirois E, Birnbaum H K. Effects of hydrogen and carbon on thermally activated deformation in nickel. Acta Metall Mater 40(6): 1377-1385 (1992)
[24]
Oriani R A, Josephic P H. Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall 22(9): 1065-1074 (1974)
[25]
Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals. Metallogr, Microstruct, Anal 5(6): 557-569 (2016)
[26]
Kürten D R, Kailer A. Wasserstofffreisetzung im Wälzkontakt. In: 59. Tribologie-Fachtagung - GfT Gesellschaft für Tribologie e. V, Göttigen, Deutschland, 2018, 37/1-5.
[27]
Franke J, Carey J T, Korres S, Haque T, Jacobs P W, Loos J, Kruhoeffer W. White etching cracking—Simulation in bearing rig and bench tests. Tribol Trans 61(3): 403-413 (2018)
[28]
Gutiérrez Guzmán F G A, Özel M, Richter S. Risse auf Lagerringen - Gefügeveränderungen in Wälzlagerringen mit Rissen als Folgeschaden. Frankfurt (Deutschland): Forschungsvereinigung Antriebstechnik e. V., 2017.
[29]
Danielsen H K, Guzmán F G, Muskulus M, Rasmussen B H, Shirani M, Cornel D, Sauvage P, Wu J, Petrov R, Jacobs G. FE8 type laboratory testing of white etching crack (WEC) bearing failure mode in 100Cr6. Wear 434-435: 202962 (2019)
[30]
Guzmán F G, Oezel M O, Jacobs G, Burghardt G, Broeckmann C, Janitzky T. Influence of slip and lubrication regime on the formation of white etching cracks on a two-disc test rig. Lubricants 6(1): 8 (2018)
[31]
Guzmán F G, Oezel M, Jacobs G, Burghardt G, Broeckmann C, Janitzky T. Reproduction of white etching cracks under rolling contact loading on thrust bearing and two-disc test rigs. Wear 390-391: 23-32 (2017)
[32]
Danielsen H K, Guzmán F G, Dahl K V, Li Y J, Wu J, Jacobs G, Burghardt G, Fæster S, Alimadadi H, Goto S, Raabe D, Petrov R. Multiscale characterization of White Etching Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig. Wear 370-371: 73-82 (2017)
[33]
Prüfung von Schmierstoffen - Mechanisch-dynamische Prüfung auf dem Wälzlagerschmierstoff-Prüfgerät FE8 | Teil 3: Verfahren für Schmieröl - einzusetzende Prüflager: Axialzylinderrollenlager. Deutsche Norm DIN 51819-3, Beuth Verlag GmbH, Berlin, Deutschland, Dez. 2016.
[34]
Dowson D, Higginson G R. Elasto-Hydrodynamic Lubrication. Burlington: Elsevier Science, 1977.
[35]
Hitzigrath F. Bestimmung von diffusiblem Wasserstoff in hochfesten Stählen in Bezug auf die Gitterstruktur. Duisburg-Essen (Deutschland): Universität Duisburg-Essen, 2018.
[36]
Kuron D, Wendler-Kalsch E, Gräfin H. Wasserstoff und Korrosion. 2. vollst. überarb. und erw. Aufl., Bonn, Deutschland, Verlag Irene Kuron, 2000.
[37]
Spur G, Stöferle T. Fügen, Handhaben, Montieren. München (Germany): Hanser Verlag, 1986.
[38]
Hirth J P. Effects of hydrogen on the properties of iron and steel. Metall Trans A 11(6): 861-890 (1980)
[39]
Riecke E, Bohnenkamp K. Über den Einfluss von Gitterstörstellen in Eisen auf die Wasserstoffdiffusion. Z Metallkd 75(1): 76-81 (1984)
[40]
Timmins P F. Solutions to Hydrogen Attack in Steels. Materials Park (USA): ASM International, 1997.
[41]
Salmi S, Rhode M, Jüttner S, Zinke M. Hydrogen determination in 22MnB5 steel grade by use of carrier gas hot extraction technique. Welding World 59(1): 137-144 (2015)
[42]
Manke G, Jürgensen J, Pohl M. Development of an in situ measuring cell to non-destructive, local measurement of diffusible hydrogen content in steels. In: Materials Performance in Hydrogen Environments, Jackson Lake Lodge, Wyoming, USA, 2016: 1-6.
[43]
Kühn S, Unterumsberger F, Suter T, Pohl T M. Neue methoden zur analyse von diffusiblem wasserstoff in hochfesten stählen. Mater Test 55(9): 648-652 (2013)
[44]
Takai K, Watanuki R. Hydrogen in trapping States innocuous to environmental degradation of high-strength steels. ISIJ Int 43(4): 520-526 (2003)
[45]
Kürten D R. Einfluss der tribochemischen Schmierstoffoxidation auf die wasserstoffinduzierte Wälzkontaktermüdung. Stuttgart (Deutschland): Karlsruher Institut für Technologie, 2015.
Friction
Pages 876-890
Cite this article:
LINZMAYER M, GUTIÉRREZ GUZMÁN F, MANKE G, et al. Post-testing measurement of freely movable and diffusible hydrogen in context of WEC formation at cylindrical roller thrust bearings from 100Cr6. Friction, 2021, 9(4): 876-890. https://doi.org/10.1007/s40544-020-0454-4

720

Views

26

Downloads

7

Crossref

N/A

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 17 January 2020
Revised: 11 August 2020
Accepted: 22 September 2020
Published: 01 December 2020
© The author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

Return