Abstract
Hemorrhage is the phenomenon of blood loss caused by vascular trauma or other pathological reasons, which is life-threatening in severe cases. Because microhemorrhage is difficult to visually monitor and pre-treat in vivo, it is necessary to establish in vitro prediction methods to study the hemostasis mechanism in different physiological environments. In this study, a microfluidic bleeding model was developed to investigate the effect of blood flow shear on microvascular hemostasis. The results indicated that the regulation of blood shear rate on platelet aggregation affected the growth and morphology of hemostatic thrombus, and finally regulated the process of hemostasis. This in vitro model is significant to studies on hemostatic mechanisms, a reliable prediction of microhemorrhages, and an adjustment of the treatment scheme.