AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (40.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

A review of the bio-tribology of medical devices

Xiaogang ZHANG1Yali ZHANG1Zhongmin JIN1,2,3( )
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
Show Author Information

Abstract

Numerous medical devices have been applied for the treatment or alleviation of various diseases. Tribological issues widely exist in those medical devices and play vital roles in determining their performance and service life. In this review, the bio-tribological issues involved in commonly used medical devices are identified, including artificial joints, fracture fixation devices, skin-related devices, dental restoration devices, cardiovascular devices, and surgical instruments. The current understanding of the bio-tribological behavior and mechanism involved in those devices is summarized. Recent advances in the improvement of tribological properties are examined. Challenges and future developments for the prospective of bio-tribological performance are highlighted.

References

[3]
Jin Z M, Zheng J, Li W, Zhou Z R. Tribology of medical devices. Biosurf Biotribol 2(4): 173-192 (2016)
[4]
Xie D, Leng Y X, Jing F J, Huang N. A brief review of bio- tribology in cardiovascular devices. Biosurf Biotribol 1(4): 249-262 (2015)
[5]
Dowson D. Bio-tribology. Faraday Discuss 156: 9-30 (2012)
[6]
Lanza A, Ruggiero A, Sbordone L. Tribology and dentistry: A commentary. Lubricants 7(6): 52 (2019)
[7]
Sahoo P, Das S K, Davim J P. Tribology of materials for biomedical applications. In Mechanical Behaviour of Biomaterials. Davim J P, Ed. San Diego (USA): Woodhead Publishing, 2019: 1-45.
[8]
Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221-300 (2020)
[9]
Nam D, Lawrie C M, Salih R, Nahhas C R, Barrack R L, Nunley R M. Cemented versus cementless total knee arthroplasty of the same modern design: A prospective, randomized trial. J Bone Joint Surg Am 101(13): 1185-1192 (2019)
[10]
Bingley R, Martin A, Manfredi O, Nejadhamzeeigilani M, Oladokun A, Beadling A R, Siddiqui S, Anderson J, Thompson J, Neville A, et al. Fretting-corrosion at the modular tapers interface: Inspection of standard ASTM F1875-98. Proc Inst Mech Eng, Part H: J Eng Med 232(5): 492-501 (2018)
[11]
Shahemi N, Liza S, Abbas A A, Merican A M. Long-term wear failure analysis of uhmwpe acetabular cup in total hip replacement. J Mech Behav Biomed Mater 87: 1-9 (2018)
[12]
Popoola O O, Villasenor D A O, Fryman J C, Mimnaugh K, Rufner A. High cycle in vitro hip wear of and in vivo biological response to vitamin E blended highly crosslinked polyethylene. Biotribology 16: 10-16 (2018)
[13]
de Steiger R, Lorimer M, Graves S E. Cross-linked polyethylene for total hip arthroplasty markedly reduces revision surgery at 16 years. J Bone Joint Surg Am 100(15): 1281-1288 (2018)
[14]
Saikko V. Wear and friction of thin, large-diameter acetabular liners made from highly cross-linked, vitamin-E-stabilized UHMWPE against CoCr femoral heads. Wear 432-433: 202948 (2019)
[15]
Łapaj Ł, Wendland J, Markuszewski J, Mróz A, Wiśniewski T. Retrieval analysis of titanium nitride (TiN) coated prosthetic femoral heads articulating with polyethylene. J Mech Behav Biomed Mater 55: 127-139 (2016)
[16]
Sonntag R, Braun S, Al-Salehi L, Reinders J, Mueller U, Kretzer J P. Three-dimensional friction measurement during hip simulation. PLoS One 12(9): e0184043 (2017)
[17]
Howard D P, Wall P D H, Fernandez M A, Parsons H, Howard P W. Ceramic-on-ceramic bearing fractures in total hip arthroplasty: An analysis of data from the National Joint Registry. Bone Joint J 99-B(8): 1012-1019 (2017)
[18]
Walter W L, Waters T S, Gillies M, Donohoo S, Kurtz S M, Ranawat A S, Hozack W J, Tuke M A. Squeaking hips. J Bone Joint Surg Am 90(Suppl 4): 102-111 (2008)
[19]
Cogan A, Nizard R, Sedel L. Occurrence of noise in alumina-on-alumina total hip arthroplasty. A survey on 284 consecutive hips. Orthop Traumatol: Surg Res 97(2): 206-210 (2011)
[20]
Siskey R, Ciccarelli L, Lui M K C, Kurtz S M. Are PEEK- on-ceramic bearings an option for total disc arthroplasty? An in vitro tribology study. Clin Orthop Relat Res 474(11): 2428-2440 (2016)
[21]
Kurtz S M. Development and clinical performance of PEEK intervertebral cages. In PEEK Biomaterials Handbook. Kurtz S M, Ed. 2nd ed. Oxford (UK): William Andrew Publishing, 2019: 263-280.
[22]
Kurtz S M, Lanman T. Dynamic stabilization and semirigid PEEK rods for spinal fusion. In PEEK Biomaterials Handbook. Kurtz S M, Ed. 2nd ed. Oxford (UK): William Andrew Publishing, 2019: 281-289.
[23]
Lovald S, Berg-Johansen B, Altiok E, Kurtz S M. Polyetheretherketone in trauma. In PEEK Biomaterials Handbook. Kurtz S M, Ed. 2nd ed. Oxford UK: William Andrew Publishing, 2019: 301-317.
[24]
Song J, Liao Z H, Shi H Y, Xiang D D, Liu Y H, Liu W Q, Peng Z X. Fretting wear study of PEEK-based composites for bio-implant application. Tribol Lett 65(4): 150 (2017)
[25]
Kurtz S M, Nevelos J. PEEK bearing materials for total joint replacement. In PEEK Biomaterials Handbook. Kurtz S M, Ed. 2nd ed. Oxford UK: William Andrew Publishing, 2019: 403-418.
[26]
Cui W, Bian Y Y, Zeng H K, Zhang X G, Zhang Y L, Weng X S, Xin S X, Jin Z M. Structural and tribological characteristics of ultra-low-wear polyethylene as artificial joint materials. J Mech Behav Biomed Mater 104: 103629 (2020)
[27]
Choi Y J, Lee K W, Ha J K, Bae J Y, Lee S K, Kim S B, Seo D K. Comparison of revision rates due to aseptic loosening between high-flex and conventional knee prostheses. Knee Surg Relat Res 30(2): 161-166 (2018)
[28]
Hampton C B, Berliner Z P, Nguyen J T, Mendez L, Smith S S, Joseph A D, Padgett D E, Rodriguez J A. Aseptic loosening at the tibia in total knee arthroplasty: A function of cement mantle quality? J Arthroplasty 35(Suppl 6): S190-S196 (2020)
[29]
Costales T G, Chapman D M, Dalury D F. The natural history of radiolucencies following uncemented total knee arthroplasty at 9 years. J Arthroplasty 35(1): 127-131 (2020)
[30]
Sharkey P F, Lichstein P M, Shen C, Tokarski A T, Parvizi J. Why are total knee arthroplasties failing today-has anything changed after 10 years? J Arthroplasty 29(9): 1774-1778 (2014)
[31]
Meneghini R M, de Beaubien B C. Early failure of cementless porous tantalum monoblock tibial components. J Arthroplasty 28(9): 1505-1508 (2013)
[32]
Rytter S, Madsen F, Jepsen C F, Stilling M. Implant fracture of the Regenerex® modular metal tibial component: A report of three cases. Knee 26(5): 1143-1151 (2019)
[33]
Stormont G, Stormont D. Catastrophic failure of regenerex tibial components: A case series. J Knee Surg 30(6): 594-599 (2017)
[34]
Bragdon C R, Burke D, Lowenstein J D, O'Connor A S D, Ramamurti B, Jasty M, Harris W H. Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion. J Arthroplasty 11(8): 945-951 (1996)
[35]
Cherian J J, Banerjee S, Kapadia B H, Jauregui J J, Harwin S F, Mont M A. Cementless total knee arthroplasty: A review. J Knee Surg 27(3): 193-198 (2014)
[36]
Arnholt C M, Macdonald D W, Malkani A L, Klein G R, Rimnac C M, Kurtz S M, Implant Research Center Writing Committee, Kocagoz S B, Gilbert J L. Corrosion damage and wear mechanisms in long-term retrieved CoCr femoral components for total knee arthroplasty. J Arthroplasty 31(12): 2900-2906 (2016)
[37]
Arnholt C M, MacDonald D W, Tohfafarosh M, Gilbert J L, Rimnac C M, Kurtz S M, Implant Research Center Writing Committee, Klein G, Mont M A, Parvizi J, et al. Mechanically assisted taper corrosion in modular TKA. J Arthroplasty 29(Suppl 9): 205-208 (2014)
[38]
Eckert J A, Mueller U, Jaeger S, Panzram B, Kretzer J P. Fretting and corrosion in modular shoulder arthroplasty: A retrieval analysis. BioMed Res Int 2016: 1695906 (2016)
[39]
Lombardo D J, Siljander M P, Gehrke C K, Moore D D, Karadsheh M S, Baker E A. Fretting and corrosion damage of retrieved dual-mobility total hip arthroplasty systems. J Arthroplasty 34(6): 1273-1278 (2019)
[40]
Colas S, Allalou A, Poichotte A, Piriou P, Dray-Spira R, Zureik M. Exchangeable femoral neck (dual-modular) THA prostheses have poorer survivorship than other designs: A nationwide cohort of 324, 108 patients. Clin Orthop Relat Res 475(8): 2046-2059 (2017)
[41]
Di Laura A, Hothi H, Henckel J, Skinner J, Hart A. Should all modular-neck hip implants be banned? Orthop Proc 100-B(Suppl 9): 39 (2018)
[42]
Siljander M P, Baker E A, Baker K C, Salisbury M R, Thor C C, Verner J J. Fretting and corrosion damage in retrieved metal-on-polyethylene modular total hip arthroplasty systems: What is the importance of femoral head size? J Arthroplasty 33(3): 931-938 (2018)
[43]
Watanabe H, Takahashi K, Takenouchi K, Sato A, Kawaji H, Nakamura H, Takai S. Pseudotumor and deep venous thrombosis due to crevice corrosion of the head-neck junction in metal-on-polyethylene total hip arthroplasty. J Orthop Sci 20(6): 1142-1147 (2015)
[44]
Hui T T, Kubacki G W, Gilbert J L. Voltage and wear debris from Ti-6Al-4V interact to affect cell viability during in-vitro fretting corrosion. J Biomed Mater Res Part A 106(1): 160-167 (2018)
[45]
Jacobs J J. Corrosion at the head-neck junction: Why is this happening now? J Arthroplasty 31(7): 1378-1380 (2016)
[46]
Swaminathan V, Gilbert J L. Fretting corrosion of CoCrMo and Ti6Al4V interfaces. Biomaterials 33(22): 5487-5503 (2012)
[47]
Kurtz S M, Kocagöz S B, Hanzlik J A, Underwood R J, Gilbert J L, MacDonald D W, Lee G C, Mont M A, Kraay M J, Klein G R, et al. Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study. Clin Orthop Relat Res 471(10): 3270-3282 (2013)
[48]
Goldberg J R, Gilbert J L, Jacobs J J, Bauer T W, Paprosky W, Leurgans S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin Orthop Relat Res 401: 149-161 (2002)
[49]
Nakahara I, Takao M, Bandoh S, Sugano N. Fixation strength of taper connection at head-neck junction in retrieved carbon fiber-reinforced PEEK hip stems. J Artif Organs 17(4): 358-363 (2014)
[50]
Osman K, Panagiotidou A P, Khan M, Blunn G, Haddad F S. Corrosion at the head-neck interface of current designs of modular femoral components. Bone Joint J 98-B(5): 579-584 (2016)
[51]
Haschke H, Falkenberg A, Morlock M M, Huber G. Do SiNx coatings bear the potential to reduce the risk of micromotion in modular taper junctions? Proc Inst Mech Eng, Part H: J Eng Med 234(9): 897-908 (2020)
[52]
Goldstein Z H, Estrera K, Levine B R. Taper failure after large-diameter metal-on-metal total hip arthroplasty. Orthopedics 39(5): e984-e987 (2016)
[53]
Tan S C, Teeter M G, Del Balso C, Howard J L, Lanting B A. Effect of taper design on trunnionosis in metal on polyethylene total hip arthroplasty. J Arthroplasty 30(7): 1269-1272 (2015)
[54]
Nassif N A, Nawabi D H, Stoner K, Elpers M, Wright T, Padgett D E. Taper design affects failure of large-head metal-on-metal total hip replacements. Clin Orthop Relat Res 472(2): 564-571 (2014)
[55]
Del Balso C, Teeter M G, Tan S C, Lanting B A, Howard J L. Taperosis: Does head length affect fretting and corrosion in total hip arthroplasty? Bone Joint J 97-B(7): 911-916 (2015)
[56]
Higgs G B, MacDonald D W, Gilbert J L, Rimnac C M, Kurtz S M, Implant Research Center Writing Committee. Does taper size have an effect on taper damage in retrieved metal-on-polyethylene total hip devices? J Arthroplasty 31(Suppl 9): 277-281 (2016)
[57]
Munir S, Walter W L, Walsh W R. Variations in the trunnion surface topography between different commercially available hip replacement stems. J Orthop Res 33(1): 98-105 (2015)
[58]
Pourzal R, Hall D J, Ha N Q, Urban R M, Levine B R, Jacobs J J, Lundberg H J. Does surface topography play a role in taper damage in head-neck modular junctions? Clin Orthop Relat Res 474(10): 2232-2242 (2016)
[59]
Ghanem E, Ward D M, Robbins C E, Nandi S, Bono J V, Talmo C T. Corrosion and adverse local tissue reaction in one type of modular neck stem. J Arthroplasty 30(10): 1787-1793 (2015)
[60]
Ho-Shui-Ling A, Bolander J, Rustom L E, Johnson A W, Luyten F P, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180: 143-162 (2018)
[61]
Li J L, Qin L, Yang K, Ma Z J, Wang Y X, Cheng L L, Zhao D W. Materials evolution of bone plates for internal fixation of bone fractures: A review. J Mater Sci Technol 36: 190-208 (2020)
[62]
Nalbantgil D, Tozlu M, Ozdemir F, Oztoprak M O, Arun T. FEM analysis of a new miniplate: Stress distribution on the plate, screws and the bone. Eur J Dent 6(1): 9-15 (2012)
[63]
Al-Tamimi A A, Hernandez M A, Omar A, Morales-Aldana D F, Peach C, Bartolo P. Mechanical, biological and tribological behaviour of fixation plates 3D printed by electron beam and selective laser melting. Int J Adv Manuf Technol 109(3): 673-688 (2020)
[64]
Bartolomeu F, Buciumeanu M, Pinto E, Alves N, Silva F S, Carvalho O, Miranda G. Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting. Trans Nonferrous Met Soc China 27(4): 829-838 (2017)
[65]
Zhang Y, Addison O, Yu F, Troconis B C R, Scully J R, Davenport A J. Time-dependent enhanced corrosion of Ti6Al4V in the presence of H2O2 and albumin. Sci Rep 8(1): 3185 (2018)
[66]
Wang C C, Zhang G Q, Li Z P, Zeng X Q, Xu Y, Zhao S C, Hu H X, Zhang Y D, Ren T H. Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants. J Mech Behav Biomed Mater 90: 460-471 (2019)
[67]
Hatem A, Lin J L, Wei R H, Torres R D, Laurindo C, de Souza G B, Soares P. Tribocorrosion behavior of low friction TiSiCN nanocomposite coatings deposited on titanium alloy for biomedical applications. Surf Coat Technol 347: 1-12 (2018)
[68]
Pana I, Vladescu A, Constantin L R, Sandu I G, Dinu M, Cotrut C M. In vitro corrosion and tribocorrosion performance of biocompatible carbide coatings. Coatings 10(7): 654 (2020)
[69]
Attabi S, Mokhtari M, Taibi Y, Abdel-Rahman I, Hafez B, Elmsellem H. Electrochemical and tribological behavior of surface-treated titanium alloy Ti-6Al-4V. J Bio-Tribo- Corros 5(1): 2 (2019)
[70]
Wang G Q, Wang S R, Yang X F, Yu X C, Wen D S, Chang Z Q, Zhang M Y. Fretting wear and mechanical properties of surface-nanostructural titanium alloy bone plate. Surf Coat Technol 405: 126512 (2021)
[71]
Al-Tamimi A A, Fernandes P R A, Peach C, Cooper G, Diver C, Bartolo P J. Metallic bone fixation implants: A novel design approach for reducing the stress shielding phenomenon. Virtual Phys Prototyp 12(2): 141-151 (2017)
[72]
Limbert G, Masen M A, Pond D, Graham H K, Sherratt M J, Jobanputra R, McBride A. Biotribology of the ageing skin—Why we should care. Biotribology 17: 75-90 (2019)
[73]
Secretariat M A. Pressure ulcer prevention: An evidence- based analysis. Ont Health Technol Assess Ser 9(2): 1-104 (2009)
[74]
Klaassen M. The static friction behavior of skin with relevance to pressure ulcer prevalence. Ph.D Thesis. Enshurd City (The Netherlands): University of Twente, 2018.
[75]
Lenz A L, Johnson K A, Bush T R. A new method to quantify liner deformation within a prosthetic socket for below knee amputees. J Biomech 74: 213-219 (2018)
[76]
Mervis J S, Phillips T J. Pressure ulcers: Pathophysiology, epidemiology, risk factors, presentation. J Am Acad Dermatol 81(4): 881-890 (2019)
[77]
Klaassen M, de Vries E G, Masen M A. Friction in the contact between skin and a soft counter material: Effects of hardness and surface finish. J Mech Behav Biomed Mater 92: 137-143 (2019)
[78]
McInnes E, Bell-Syer S E, Dumville J C, Legood R, Cullum N A. Support surfaces for pressure ulcer prevention. Cochrane Database Syst Rev 4(4): CD001735 (2008)
[79]
Gefen A. The bioengineering theory of the key modes of action of a cyanoacrylate liquid skin protectant. Int Wound J 17(5): 1396-1404 (2020)
[80]
Armentia M, Abasolo M, Coria I, Albizuri J. Fatigue design of dental implant assemblies: A nominal stress approach. Metals 10(6): 744 (2020)
[81]
Carvalho A, Pinto P, Madeira S, Silva F S, Carvalho O, Gomes J R. Tribological characterization of dental restorative materials. Biotribology 23: 100140 (2020)
[82]
Mörmann W H, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and Martens hardness. J Mech Behav Biomed Mater 20: 113-125 (2013)
[83]
Shenoy A, Shenoy N. Dental ceramics: An update. J Conserv Dent 13(4): 195-203 (2010)
[84]
Arsecularatne J A, Chung N R, Hoffman M. An in vitro study of the wear behaviour of dental composites. Biosurf Biotribol 2(3): 102-113 (2016)
[85]
El Zhawi H, Kaizer M R, Chughtai A, Moraes R R, Zhang Y. Polymer infiltrated ceramic network structures for resistance to fatigue fracture and wear. Dent Mater 32(11): 1352-1361 (2016)
[86]
Pratap B, Gupta R K, Bhardwaj B, Nag M. Resin based restorative dental materials: Characteristics and future perspectives. Jpn Dent Sci Rev 55(1): 126-138 (2019)
[87]
Pratap B, Gupta R K, Shekhawat D S, Yadav A, Chaabra D, Nag M. Physical and mechanical characterization of nanoalumina filled resin based dental composites. Mater Today: Proc 28: 2171-2173 (2020)
[88]
Kruzic J J, Arsecularatne J A, Tanaka C B, Hoffman M J, Cesar P F. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. J Mech Behav Biomed Mater 88: 504-533 (2018)
[89]
Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B, Van Landuyt K L. Is secondary caries with composites a material-based problem? Dent Mate 31(11): e247-e277 (2015)
[90]
Yadav S, Gangwar S. A critical evaluation of tribological interaction for restorative materials in dentistry. Int J Polym Mater Polym Biomater 68(17): 1005-1019 (2019)
[91]
Kumar S R, Patnaik A, Bhat I K. The in vitro wear behavior of nanozirconia-filled dental composite in food slurry condition. Proc Inst Mech Eng, Part J: J Eng Tribology 231(1): 23-40 (2016)
[92]
Chadda H, Satapathy B K, Patnaik A, Ray A R. Mechanistic interpretations of fracture toughness and correlations to wear behavior of hydroxyapatite and silica/hydroxyapatite filled bis-GMA/TEGDMA micro/hybrid dental restorative composites. Compos Part B: Eng 130: 132-146 (2017)
[93]
Choi J W, Song E J, Shin J H, Jeong T S, Huh J B. In vitro investigation of wear of CAD/CAM polymeric materials against primary teeth. Materials 10(12): 1410 (2017)
[94]
Xu Z, Yu P, Arola D D, Min J, Gao S S. A comparative study on the wear behavior of a polymer infiltrated ceramic network (PICN) material and tooth enamel. Dent Mater 33(12): 1351-1361 (2017)
[95]
Yu P, Xu Z, Arola D D, Min J, Zhao P, Gao S S. Effect of acidic agents on the wear behavior of a polymer infiltrated ceramic network (PICN) material. J Mech Behav Biomed Mater 74: 154-163 (2017)
[96]
Corne P, De March P, Cleymand F, Geringer J. Fretting- corrosion behavior on dental implant connection in human saliva. J Mech Behav Biomed Mater 94: 86-92 (2019)
[97]
Alfaro M F, Rossman P K, da Silva Viera Marques I, Dube A, Takoudis C, Shokuhfar T, Mathew M T, Sukotjo C. Interface damage in titanium dental implant due to tribocorrosion: The role of mastication frequencies. J Bio- Tribo-Corros 5(4): 81 (2019)
[98]
Apaza-Bedoya K, Tarce M, Benfatti C A M, Henriques B, Mathew M T, Teughels W, Souza J C M. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review. J Periodontal Res 52(6): 946-954 (2017)
[99]
Lioubavina-Hack N, Lang N P, Karring T. Significance of primary stability for osseointegration of dental implants. Clin Oral Implants Res 17(3): 244-250 (2006)
[100]
Liu X T, Chen S Y, Tsoi J K H, Matinlinna J P. Binary titanium alloys as dental implant materials—a review. Regen Biomater 4(5): 315-323 (2017)
[101]
Khodaei M, Nejatidanesh F, Shirani M J, Iyengar S, Sina H, Valanezhad A, Savabi O. Optimum temperature and chlorine ion concentration for hydrogen peroxide treatment of titanium dental implant material. J Mater Res Technol 9(6): 13312-13319 (2020)
[102]
Bosshardt D D, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000 73(1): 22-40 (2017)
[103]
Hussein M A, Suryanarayana C, Arumugam M K, Al- Aqeeli N. Effect of sintering parameters on microstructure, mechanical properties and electrochemical behavior of Nb-Zr alloy for biomedical applications. Mater Des 83: 344-351 (2015)
[104]
Liu R, Tang Y L, Zeng L L, Zhao Y, Ma Z, Sun Z Q, Xiang L B, Ren L, Yang K. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent Mater 34(8): 1112-1126 (2018)
[105]
Lan C B, Wu Y, Guo L L, Chen H J, Chen F. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy. J Mater Sci Technol 34(5): 788-792 (2018)
[106]
Yan L M, Yuan Y W, Ouyang L J, Li H, Mirzasadeghi A, Li L. Improved mechanical properties of the new Ti-15Ta-xZr alloys fabricated by selective laser melting for biomedical application. J Alloys Compd 688: 156-162 (2016)
[107]
Yabutsuka T, Mizuno H, Takai S. Fabrication of bioactive titanium and its alloys by combination of doubled sandblasting process and alkaline simulated body fluid treatment. J Ceram Soc Japan 127(10): 669-677 (2019)
[108]
Liu X, Niu Y M, Xie W L, Wei D Q, Du Q. Comparative investigations of in vitro and in vivo bioactivity of titanium vs. Ti-24Nb-4Zr-8Sn alloy before and after sandblasting and acid etching. RSC Adv 10(40): 23582-23591 (2020)
[109]
Khodaei M, Alizadeh A, Hosseini H R M. Effect of oxidizing atmosphere on the surface of titanium dental implant material. J Bionic Eng 16(6): 1052-1060 (2019)
[110]
Wang F F, Li C J, Zhang S, Liu H C. Tantalum coated on titanium dioxide nanotubes by plasma spraying enhances cytocompatibility for dental implants. Surf Coat Technol 382: 125161 (2020)
[111]
An B L, Li Z R, Diao X O, Xin H T, Zhang Q, Jia X R, Wu Y L, Li K, Guo Y Z. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. Mater Sci Eng: C 67: 34-41 (2016)
[112]
Medvedev A E, Molotnikov A, Lapovok R, Zeller R, Berner S, Habersetzer P, Torre F D. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material. J Mech Behav Biomed Mater 62: 384-398 (2016)
[113]
Kruk A, Zimowski S, Łukaszczyk A, Cieniek Ł, Moskalewicz T. The influence of heat treatment on the microstructure, surface topography and selected properties of PEEK coatings electrophoretically deposited on the Ti-6Al-4V alloy. Prog Org Coat 133: 180-190 (2019)
[114]
Pałka K, Pokrowiecki R. Porous titanium implants: A review. Adv Eng Mater 20(5): 1700648 (2018)
[115]
Bose S, Banerjee D, Shivaram A, Tarafder S, Bandyopadhyay A. Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Mater Des 151: 102-112 (2018)
[116]
Edelmann A R, Patel D, Allen R K, Gibson C J, Best A M, Bencharit S. Retrospective analysis of porous tantalum trabecular metal-enhanced titanium dental implants. J Prosthet Dent 121(3): 404-410 (2019)
[117]
Kuo T Y, Chin W H, Chien C S, Hsieh Y H. Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying. Surf Coat Technol 372: 399-409 (2019)
[118]
Zhao D F, Seco M, Wu J J, Edelman J B, Wilson M K, Vallely M P, Byrom M J, Bannon P G. Mechanical versus bioprosthetic aortic valve replacement in middle-aged adults: A systematic review and meta-analysis. Ann Thorac Surg 102(1): 315-327 (2016)
[119]
Zilla P, Brink J, Human P, Bezuidenhout D. Prosthetic heart valves: Catering for the few. Biomaterials 29(4): 385-406 (2008)
[120]
Zhang H B, Deng X Y, Cianciulli T F, Zhang Z, Chappard D, Lax J A, Saccheri M C, Redruello H J, Jordana J L, Prezioso H A, et al. Pivoting system fracture in a bileaflet mechanical valve: A case report. J Biomed Mate Res - Part B Appl Biomater 90B(2): 952-961 (2009)
[121]
Sundareswaran K S, Reichenbach S H, Masterson K B, Butler K C, Farrar D J. Low bearing wear in explanted HeartMate II left ventricular assist devices after chronic clinical support. ASAIO J 59(1): 41-45 (2013)
[122]
Moazami N, Fukamachi K, Kobayashi M, Smedira N G, Hoercher K J, Massiello A, Lee S, Horvath D J, Starling R C. Axial and centrifugal continuous-flow rotary pumps: A translation from pump mechanics to clinical practice. J Heart Lung Transplant 32(1): 1-11 (2013)
[123]
da Silva B U, da Fonseca J W G, Leal E B, Cardoso J R, Biscegli J F, de Andrade A J P. Apical aortic blood pump preclinical assessment for long-term use: Durability test and stator topology to reduce wear in the bearing system. Artif Organs 44(8): 779-784 (2020)
[124]
Wagner R M F, Maiti R, Carré M J, Perrault C M, Evans P C, Lewis R. Bio-tribology of vascular devices: A review of tissue/device friction research. Biotribology 25: 100169 (2021)
[125]
Cornelissen A, Vogt F J. The effects of stenting on coronary endothelium from a molecular biological view: Time for improvement? J Cell Mol Med 23(1): 39-46 (2019)
[126]
Krsmanovic D, Koncar I, Petrovic D, Milasinovic D, Davidovic L, Filipovic N. Computer modelling of maximal displacement forces in endoluminal thoracic aortic stent graft. Comput Methods Biomech Biomed Engin 17(9): 1012-1020 (2014)
[127]
Wang J, Giridharan V, Shanov V, Xu Z G, Collins B, White L, Jang Y, Sankar J, Huang N, Yun Y. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater 10(12): 5213-5223 (2014)
[128]
Chen T H, Lancaster M, Lin D S Y, Doyle M G, Forbes T L, Amon C H. Measurement of frictional properties of aortic stent grafts and their delivery systems. J Med Devices 13(2): 021008 (2019)
[129]
McGee O M, Sun W, McNamara L M. An in vitro model quantifying the effect of calcification on the tissue-stent interaction in a stenosed aortic root. J Biomech 82: 109-115 (2019)
[130]
Kapnisis K K, Halwani D O, Brott B C, Anderson P G, Lemons J E, Anayiotos A S. Stent overlapping and geometric curvature influence the structural integrity and surface characteristics of coronary nitinol stents. J Mech Behav Biomed Mater 20: 227-236 (2013)
[131]
Weiss D, Gefen A, Einav S. Modelling catheter-vein biomechanical interactions during an intravenous procedure. Comput Methods Biomech Biomed Eng 19(3): 330-339 (2016)
[132]
Lin C X, Wan H P, Kaper H J, Sharma P K. A hyaluronic acid based lubricious coating for cardiovascular catheters. Tribol Int 151: 106495 (2020)
[133]
Takahashi T, Murayama R, Abe-Doi M, Miyahara-Kaneko M, Kanno C, Nakamura M, Mizuno M, Komiyama C, Sanada H. Preventing peripheral intravenous catheter failure by reducing mechanical irritation. Sci Rep 10(1): 1550 (2020)
[134]
Mohammadzadegan A F, Ashrafzadeh F, Moodi H. Hybrid force and position control of a 4DOF surgical robot with disturbance observer. In Proceedings of 2019 27th Iranian Conference on Electrical Engineering, Yazd, Iran, 2019: 1052-1057.
[135]
Sahlabadi M, Khodaei S, Jezler K, Hutapea P. Insertion mechanics of bioinspired needles into soft tissues. Minim Invasive Ther Allied Technol 27(5): 284-291 (2018)
[136]
Gao D D, Lei Y, Lian B, Yao B. Modeling and simulation of flexible needle insertion into soft tissue using modified local constraints. J Manuf Sci Eng 138(12): 121012 (2016)
[137]
Abolhassani N, Patel R, Moallem M. Needle insertion into soft tissue: A survey. Med Eng Phys 29(4): 413-431 (2007)
[138]
Tan L, Jones J A, Barnett A C, Zhang H, Moore J Z, Zhang Q. Force model for ultrasonic needle insertion. Exp Tech 42(5): 499-508 (2018)
[139]
Ramezanpour H, Yousefi H, Rezaei M, Rostami M. Effects of rotational motion in robotic needle insertion. J Biomed Phys Eng 5(4): 207-216 (2015)
[140]
DiMaio S P, Salcudean S E. Interactive simulation of needle insertion models. IEEE Trans Biomed Eng 52(7): 1167-1179 (2005)
[141]
Rossa C, Lehmann T, Sloboda R, Usmani N, Tavakoli M. A data-driven soft sensor for needle deflection in heterogeneous tissue using just-in-time modelling. Med Biol Eng Comput 55(8): 1401-1414 (2017)
[142]
Rajeswari N R, Malliga P. Analytical approach for optimization design of MEMS based microneedles in drug delivery system. J Mech Sc Technol 29(8): 3405-3415 (2015)
[143]
Chentanez N, Alterovitz R, Ritchie D, Cho L, Hauser K K, Goldberg K, Shewchuk J R, O'Brien J F. Interactive simulation of surgical needle insertion and steering. ACM Trans Graph 28(3): 88 (2009)
[144]
Mo Z L, Mao X J, Hicks K O, Xu W L. In-vivo tissue identification on mice using a fiber optical tip force sensing needle. IEEE Sens J 18(15): 6352-6359 (2018)
[145]
Elgezua I, Kobayashi Y, Fujie M G. Estimation of needle tissue interaction based on non-linear elastic modulus and friction force patterns. In Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, USA, 2014: 4315-4320.
[146]
Okamura A M, Simone C, O’Leary M D. Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng 51(10): 1707-1716 (2004)
[147]
Asadian A, Kermani M R, Patel R V. A compact dynamic force model for needle-tissue interaction. In Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 2010: 2292-2295.
[148]
Roesthuis R J, Van Veen Y R J, Jahya A, Misra S. Mechanics of needle-tissue interaction. In Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011: 2557-2563.
[149]
Yang C J, Xie Y, Liu S, Sun D. Force modeling, identification, feedback control of robot-assisted needle insertion: A survey of the literature. Sensors 18(2): 561 (2018)
[150]
Mahvash M, Dupont P E. Mechanics of dynamic needle insertion into a biological material. IEEE Trans Biomed Eng 57(4): 934-943 (2010)
[151]
Chen H C, Shaw J S, Lee J F, Wu S F. Study on fast needle puncture to reduce pain. In Proceedings of 2019 IEEE International Conference on Architecture, Construction, Environment and Hydraulics, Xiamen, China, 2019: 128-132.
[152]
Khadem M, Rossa C, Sloboda R S, Usmani N, Tavakoli M. Mechanics of tissue cutting during needle insertion in biological tissue. IEEE Robot Autom Lett 1(2): 800-807 (2016)
[153]
Mahvash M, Dupont P E. Fast needle insertion to minimize tissue deformation and damage. In Proceedings of 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009: 3097-3102.
[154]
Tsumura R, Takishita Y, Fukushima Y, Iwata H. Histological evaluation of tissue damage caused by rotational needle insertion. In Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, USA, 2016: 5120-5123.
[155]
Abolhassani N, Patel R V, Ayazi F. Minimization of needle deflection in robot-assisted percutaneous therapy. Int J Med Robot Comput Assist Surg 3(2): 140-148 (2007)
[156]
Zwimpfer T A, Fellmann-Fischer B, Oehler R, Schötzau A, Kind A B. A crossover study on the advantage of an additional rotation function in a needle holder compared to a conventional needle holder in a pelvitrainer model. Laparosc Surg 4(10): 1-9 (2020)
[157]
Yen C J. Huang Y A, Lin C L. Using simulation to study cutting force in biopsy needle insertion with bi-directional rotation. J Mech Med Biol 19(2): 1940020 (2019)
[158]
Tsumura R, Shitashima K, Iwata H. Insertion method for minimizing fine needle deflection in bowel insertion based on experimental analysis. In Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada, 2017: 187-192.
[159]
Wang Y, Fu Z, Zhao Z F, Shen Y, Zhang T F, Shi W Y, Fei J, Chen G B. Experimental study of the optimum puncture pattern of robot-assisted needle insertion into hyperelastic materials. Proc Inst Mech Eng, Part H: J Eng Med 235(1): 28-43 (2021)
[160]
Moore J Z, Zhang Q H, McGill C S, Zheng H J, McLaughlin P W, Shih A J. Modeling cutting edge geometry for plane and curved needle tips. Proc Inst Mech Eng, Part B: J Eng Manuf 226(5): 861-869 (2012)
[161]
Lee J, Wang J, Park W. Efficient mechanism design and systematic operation planning for tube-wire flexible needles. J Mech Robot 10(6): 065001 (2018)
[162]
Dehghan E, Wen X, Zahiri-Azar R, Marchal M, Salcudean S E. Modeling of needle-tissue interaction using ultrasound- based motion estimation. Med Image Comput Comput Assist Interv, 10(Pt 1): 709-716 (2007)
[163]
Sprang T, Breedveld P, Dodou D. Wasp-inspired needle insertion with low net push force. In Proceedings of the 5th Conference on Biomimetic and Biohybrid Systems, Edinburgh, UK, 2016: 307-318.
[164]
Moore J Z, Malukhin K, Shih A J, Ehmann K F. Hollow needle tissue insertion force model. CIRP Ann 60(1): 157-160 (2011)
[165]
Moore J Z, Shih A J. Tissue oblique cutting flow angle and needle insertion contact length. Trans NAMRI/SME 38: 711-718 (2010)
[166]
Moore J Z, McLaughlin P W, Shih A J. Novel needle cutting edge geometry for end-cut biopsy. Med Phys 39(1): 99-108 (2012)
[167]
Wang Y C, Chen R K, Tai B L, Xu K, Shih A J. Study of insertion force and deformation for suturing with precurved NiTi guidewire. J Biomech Eng 137(4): 041004 (2015)
[168]
Præstmark K A, Jensen M L, Madsen N B, Kildegaard J, Stallknecht B M. Pen needle design influences ease of insertion, pain, skin trauma in subjects with type 2 diabetes. BMJ Open Diabetes Res Care 4(1): e000266 (2016)
[169]
Patel D S, Singh A, Jain V K, Ramkumar J, Shrivastava A. Investigations into insertion force of electrochemically micro-textured hypodermic needles. Int J Adv Manuf Technol 100(5-8): 1311-1326 (2019)
[170]
Kasem H, Shriki H, Ganon L, Mizrahi M, Abd-Rbo K, Domb A J. Rubber plunger surface texturing for friction reduction in medical syringes. Friction 7(4): 351-358 (2019)
[171]
Gidde S T R, Ciuciu A, Devaravar N, Doracio R, Kianzad K, Hutapea P. Effect of vibration on insertion force and deflection of bioinspired needle in tissues. Bioinspir Biomim 15(5): 054001 (2020)
[172]
Arata J, Kogiso S, Sakaguchi M, Nakadate R, Oguri S, Uemura M, Byunghyun C, Akahoshi T, Ikeda T, Hashizume M. Articulated minimally invasive surgical instrument based on compliant mechanism. Int J Comput Assist Radiol Surg 10(11): 1837-1843 (2015)
[173]
Sun Y Y, Liu H B, Wang S X, Back J, Zuo S Y, Bernth J E, Zhang G K, Wang G H, Li J M. A variable-dimension overtube for natural orifice transluminal endoscopic surgery. IEEE Access 8: 42720-42733 (2020)
[174]
Gao M Y, Hu C Z, Chen Z Z, Zhang H H, Liu S. Design and fabrication of a magnetic propulsion system for self- propelled capsule endoscope. IEEE Trans Biomed Eng 57(12): 2891-2902 (2010)
[175]
Goldbart O, Elianov O, Shumalinsky D, Lobik L, Cytron S, Rosentsveig R, Wagner H D, Tenne R. Study of urological devices coated with fullerene-like nanoparticles. Nanoscale 5(18): 8526-8532 (2013)
[176]
Goldbart O, Sedova A, Yadgarov L, Rosentsveig R, Shumalinsky D, Lobik L, Wagner H D, Tenne R. Lubricating medical devices with fullerene-like nanoparticles. Tribol Lett 55(1): 103-109 (2014)
[177]
Thiong’o G M, Luzzio C, Albright A L. Ventriculoperitoneal shunt perforations of the gastrointestinal tract. J Neurosurg Pediatr 16(1): 36-41 (2015)
[178]
Lin C X, Liu W, Xie J Y, Li W, Zhou Z R. The lubricating function of mucin at the gastroscope device-esophagus interface. Tribol Lett 68(3): 82 (2020)
[179]
Sammour T, Kahokehr A, Srinivasa S, Bissett I P, Hill A G. Laparoscopic colorectal surgery is associated with a higher intraoperative complication rate than open surgery. Ann Surg 253(1): 35-43 (2011)
[180]
Barrie J. Next generation of atraumatic laparoscopic instruments through analysis of the instrument-tissue interface. Ph.D Thesis. Leeds (UK): University of Leeds, 2017.
[181]
Bos J, Doornebosch E W L J, Engbers J G, Nyhuis O, Dodou D. Methods for reducing peak pressure in laparoscopic grasping. Proc Inst Mech Eng Part, H: J Eng Med 227(12): 1292-1300 (2013)
[182]
Marucci D D, Cartmill J A, Martin C J, Walsh W R. A compliant tip reduces the peak pressure of laparoscopic graspers. ANZ J Surg 72(7): 476-478 (2002)
[183]
Lee H J, Box G N, Abraham J B A, Elchico E R, Panah R A, Taylor M B, Moskowitz R, Deane L A, McDougall E M, Clayman R V. Laboratory evaluation of laparoscopic vascular clamps using a load-cell device—are all clamps the same? J Urol 180(4): 1267-1272 (2008)
[184]
Heijnsdijk E A M, Kragten G A, Mugge W, Dankelman J, Gouma D J. Fenestrations in the jaws of laparoscopic graspers. Minim Invasive Ther Allied Technol 14(1): 45-48 (2005)
[185]
Brown A W, Brown S I, Mclean D, Wang Z G, Cuschieri A. Impact of fenestrations and surface profiling on the holding of tissue by parallel occlusion laparoscopic graspers. Surg Endosc 28(4): 1277-1283 (2014)
[186]
Cheng L, Hannaford B. Evaluation of liver tissue damage and grasp stability using finite element analysis. Comput Methods Biomech Biomed Eng 19(1): 31-40 (2016)
[187]
Wils K S, Devasahayam S R, Manivannan M, Mathew G. Force model for laparoscopic graspers: implications for virtual simulator design. Minima Invasive Ther Allied Technol 26(2): 97-103 (2017)
[188]
Sakaguchi Y, Sato T, Yutaka Y, Muranishi Y, Komatsu T, Yoshizawa A, Nakajima N, Nakamura T, Date H. Development of novel force-limiting grasping forceps with a simple mechanism. European J Cardio-Thorac Surg 54(6): 1004-1012 (2018)
[189]
Xue R F, Du Z J, Yan Z Y, Ren B Y. An estimation method of grasping force for laparoscope surgical robot based on the model of a cable-pulley system. Mech Mach Theory 134: 440-454 (2019)
[190]
Li C S, Gu X Y, Ren H L. A cable-driven flexible robotic grasper with lego-like modular and reconfigurable joints. IEEE/ASME Trans Mech 22(6): 2757-2767 (2017)
[191]
Ly H H, Tanaka Y, Fukuda T, Sano A. Grasper having tactile sensing function using acoustic reflection for laparoscopic surgery. Int J Comput Assist Radiol Surg 12(8): 1333-1343 (2017)
[192]
Alleblas C C J, Vleugels M P H, Stommel M W J, Nieboer T E. Performance of a haptic feedback grasper in laparoscopic surgery: A randomized pilot comparison with conventional graspers in a porcine model. Surg Innov 26(5): 573-580 (2019)
Friction
Pages 4-30
Cite this article:
ZHANG X, ZHANG Y, JIN Z. A review of the bio-tribology of medical devices. Friction, 2022, 10(1): 4-30. https://doi.org/10.1007/s40544-021-0512-6

834

Views

116

Downloads

48

Crossref

55

Web of Science

53

Scopus

4

CSCD

Altmetrics

Received: 01 January 2021
Revised: 18 March 2021
Accepted: 23 March 2021
Published: 09 June 2021
© The author(s) 2021

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return