Home Friction Article
PDF (2.6 MB)
Collect
Submit Manuscript
Research Article | Open Access

Role of capillary adhesion in the friction peak during the tacky transition

Tianyan GAOJiaxin YEKaisen ZHANGXiaojun LIUYan ZHANGKun LIU()
Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The friction peak that occurs in tire–road sliding when the contact changes from wet to dry was previously attributed to capillary cohesion, van der Waals attraction, and surface roughness, but the detailed mechanisms have yet to be revealed. In this study, friction and static contact experiments were conducted using a custom-built in situ optical microtribometer, which allowed us to investigate the evolution of the friction, normal load, and contact area between a polydimethylsiloxane (PDMS) film and a silicon nitride ball during water volatilization. The friction coefficient increased by 100%, and the normal force dropped by 30% relative to those in the dry condition during the wet-to-dry transition. In static contact experiments, the probe indentation depth increased, and the normal load decreased by ~60% as the water evaporated. Combining the friction and static contact results, we propose that the large friction peak that appeared in this study can be attributed to the combined effects of increased adhesive capillary force and increased plowing during the wet-to-dry transition.

References

[1]
de Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer, 2004.
[2]
Deleau F, Mazuyer D, Koenen A. Sliding friction at elastomer/ glass contact: Influence of the wetting conditions and instability analysis. Tribol Int 42(1): 149159 (2009)
[3]
Persson B N J. Capillary adhesion between elastic solids with randomly rough surfaces. J Phys: Condens Matter 20(31): 315007 (2008)
[4]
Roberts A D, Tabor D. The extrusion of liquids between highly elastic solids. Proc Roy Soc A: Math Phys Eng Sci 325(1562): 323345 (1971)
[5]
Le Rouzic J, Le Bot A, Perret-Liaudet J, Guibert M, Rusanov A, Douminge L, Bretagnol F, Mazuyer D. Friction-induced vibration by Stribeck’s law: Application to wiper blade squeal noise. Tribol Lett 49(3): 563572 (2013)
[6]
Bocquet L, Charlaix E, Ciliberto S, Crassous J. Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396(6713): 735737 (1998)
[7]
Drechsler P, Federle W. Biomechanics of smooth adhesive pads in insects: Influence of tarsal secretion on attachment performance. J Comp Physiol A 192(11): 12131222 (2006)
[8]
Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids. Proc Roy Soc A: Math Phys Eng Sci 324(1558): 301313 (1971)
[9]
Kendall K. The adhesion and surface energy of elastic solids. J Phys D: Appl Phys 4(8): 11861195 (1971)
[10]
Tabor D. Surface forces and surface interactions. J Colloid Interface Sci 58(1): 213 (1977)
[11]
Derjaguin B, Muller V, Toporov Y. On different approaches to the contact mechanics. J Colloid Interface Sci 73(1): 293294 (1980)
[12]
Maugis D. Adhesion of spheres: The JKR-DMT transition using a dugdale model. J Colloid Interface Sci 150(1): 243269 (1992)
[13]
Reedy E D Jr. Thin-coating contact mechanics with adhesion. J Mater Res 21(10): 26602668 (2006)
[14]
Hill I J, Sawyer W G. Energy, adhesion, and the elastic foundation. Tribol Lett 37(2): 453461 (2010)
[15]
Dickrell III D J, Sawyer W G. Intermolecular forces, adhesion, and the elastic foundation. Tribol Lett 50(2): 245260 (2013)
[16]
Loskofsky C, Song F, Newby B M Z. Underwater adhesion measurements using the JKR technique. J Adh 82(7): 713730 (2006)
[17]
Martin P, Silberzan P, Brochard-Wyart F. Sessile droplets at a solid/elastomer interface. Langmuir 13(18): 49104914 (1997)
[18]
Wang Z X. Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques. Master’s Thesis. Florida (USA): University of South Florida, 2011.
[19]
Maegawa S, Itoigawa F, Nakamura T. Dynamics in sliding friction of soft adhesive elastomer: Schallamach waves as a stress-relaxation mechanism. Tribol Int 96: 2330 (2016)
[20]
Bennett A I, Harris K L, Schulze K D, Urueña J M, McGhee A J, Pitenis A A, Müser M H, Angelini T E, Sawyer W G. Contact measurements of randomly rough surfaces. Tribol Lett 65(4): 134 (2017)
[21]
Krick B A, Vail J R, Persson B N J, Sawyer W G. Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol Lett 45(1): 185194 (2012)
[22]
Rowe K G, Bennett A I, Krick B A, Gregory Sawyer W. In situ thermal measurements of sliding contacts. Tribol Int 62: 208214 (2013)
[23]
Foord C A, Wedeven L D, Westlake F J, Cameron A. Optical elastohydrodynamics. Proc Inst Mech Engineers 184(1): 487505 (1969)
[24]
McFarlane J S, Tabor D. Adhesion of solids and the effect of surface films. Proc Roy Soc A: Math Phys Sci 202(1069): 224243 (1950)
[25]
Megias-Alguacil D, Gauckler L J. Analysis of the capillary forces between two small solid spheres binded by a convex liquid bridge. Powder Technol 198(2): 211218 (2010)
[26]
Carambassis A, Jonker L C, Attard P, Rutland M W. Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble. Phys Rev Lett 80(24): 53575360 (1998)
[27]
Fukahori Y, Gabriel P, Busfield J J C. How does rubber truly slide between Schallamach waves and stick–slip motion?. Wear 269(11–12): 854866 (2010)
[28]
Pawlak Z, Urbaniak W, Oloyede A. The relationship between friction and wettability in aqueous environment. Wear 271(9–10): 17451749 (2011)
[29]
Maegawa S, Nakano K. Mechanism of stick-slip associated with Schallamach waves. Wear 268(7–8): 924930 (2010)
Friction
Pages 1208-1216
Cite this article:
GAO T, YE J, ZHANG K, et al. Role of capillary adhesion in the friction peak during the tacky transition. Friction, 2022, 10(8): 1208-1216. https://doi.org/10.1007/s40544-021-0524-2
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return