Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A one-step method was developed to create a highly biocompatible micropatterned surface on a diamond-like carbon (DLC) through irradiation with a nitrogen ion beam and thus enhance the biocompatibility of osseointegrated surfaces and biotribological performance of articular surfaces. The biocompatibility and biotribological mechanisms were analyzed in terms of the structure and morphology of DLC. It was demonstrated that a layer enriched in sp3 C–N bonds was formed on the surface of the DLC after nitrogen ion beam irradiation. Moreover, with an increase in the radiation dose, the content of sp3 C–N on the DLC surface increased significantly, and the biocompatibility was positively correlated with it. The adhesion of the MC3T3 osteoblasts increased significantly from 32% to 86% under an irradiation dose of 8 × 1015 ions/cm2. In contrast, the micropattern had a significant negative effect on the adhesion of the osteoblasts as it physically hindered cell expansion and extension. The micropattern with a depth of 37 nm exhibited good friction properties, and the coefficient of friction was reduced by 21% at relatively high speeds.
839
Views
26
Downloads
13
Crossref
11
Web of Science
11
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.