Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In situ changes in the nanofriction and microstructures of ionic liquids (ILs) on uncharged and charged surfaces have been investigated using colloid probe atomic force microscopy (AFM) and molecular dynamic (MD) simulations. Two representative ILs, [BMIM][BF4] (BB) and [BMIM][PF6] (BP), containing a common cation, were selected for this study. The torsional resonance frequency was captured simultaneously when the nanoscale friction force was measured at a specified normal load; and it was regarded as a measure of the contact stiffness, reflecting in situ changes in the IL microstructures. A higher nanoscale friction force was observed on uncharged mica and highly oriented pyrolytic graphite (HOPG) surfaces when the normal load increased; additionally, a higher torsional resonance frequency was detected, revealing a higher contact stiffness and a more ordered IL layer. The nanofriction of ILs increased at charged HOPG surfaces as the bias voltage varied from 0 to 8 V or from 0 to −8 V. The simultaneously recorded torsional resonance frequency in the ILs increased with the positive or negative bias voltage, implying a stiffer IL layer and possibly more ordered ILs under these conditions. MD simulation reveals that the [BMIM]+ imidazolium ring lies parallel to the uncharged surfaces preferentially, resulting in a compact and ordered IL layer. This parallel "sleeping" structure is more pronounced with the surface charging of either sign, indicating more ordered ILs, thereby substantiating the AFM-detected stiffer IL layering on the charged surfaces. Our in situ observations of the changes in nanofriction and microstructures near the uncharged and charged surfaces may facilitate the development of IL-based applications, such as lubrication and electrochemical energy storage devices, including supercapacitors and batteries.
837
Views
22
Downloads
10
Crossref
8
Web of Science
8
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.