Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To meet the surging needs in energy efficiency and eco-friendly lubricants, a novel superlubricious technology using a vegetable oil and ceramic materials is proposed. By coupling different hydrogen-free amorphous carbon coatings with varying fraction of sp2 and sp3 hybridized carbon in presence of a commercially available silicon nitride bulk ceramic, castor oil provides superlubricity although the liquid vegetable oil film in the contact is only a few nanometres thick at most. Besides a partial liquid film possibly separating surfaces in contact, local tribochemical reactions between asperities are essential to maintain superlubricity at low speeds. High local pressure activates chemical degradation of castor oil generating graphitic/graphenic-like species on top of asperities, thus helping both the chemical polishing of surface and its chemical passivation by H and OH species. Particularly, the formation of the formation of –(CH2–CH2)n–noligomers have been evidenced to have a major role in the friction reduction. Computer simulation unveils that formation of chemical degradation products of castor oil on friction surfaces are favoured by the quantity of sp2-hybridized carbon atoms in the amorphous carbon structure. Hence, tuning sp2-carbon content in hydrogen-free amorphous carbon, in particular, on the top layers of the coating, provides an alternative way to control superlubricity achieved with castor oil and other selected green lubricants.
713
Views
10
Downloads
17
Crossref
19
Web of Science
18
Scopus
2
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.