Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Osteoarthritis (OA) has been regarded as a lubrication deficiency related joint disease. Combination of both joint lubrication and drug intervention may provide a promising nonsurgical strategy for treatment of OA. Developing novel and simple approaches to fabricate superlubricating nanoparticles with drug release property is highly required. Herein, dopamine triggered one-step polymerization method was employed to fabricate polydopamine/poly(3-sulfopropyl methacrylate potassium salt) (PDA–PSPMA) conjugate coating on hollow silica (h-SiO2) nanosphere surfaces to engineer functional nanoparticles (h-SiO2/PDA–PSPMA). The as-prepared h-SiO2/PDA–PSPMA exhibits excellent aqueous lubrication performance on biomaterial substrates as well as natural bovine articular cartilage based on hydration effect of negatively charged PDA–PSPMA coating and "rolling" effect of h-SiO2 nanospheres. In vitro drug loading-release experiments demonstrate that PDA–PSPMA coating functionalized h-SiO2 nanospheres show high drug-loading and sustained-release capability of an anti-inflammatory drug, diclofenac sodium (DS). Such h-SiO2/PDA–PSPMA nanospheres can be potentially used as a synergistic therapy agent for OA treatment combining by simultaneous joint lubrication and drug release.
626
Views
17
Downloads
11
Crossref
10
Web of Science
11
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.