Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The stability and lifetime of electrical contact pose a major challenge to the performance of micro-electro-mechanical systems (MEMS), such as MEMS switches. The microscopic failure mechanism of electrical contact still remains largely unclear. Here conductive atomic force microscopy with hot switching mode was adopted to simulate the asperity-level contact condition in a MEMS switch. Strong variation and fluctuation of current and adhesion force were observed during 10,000 repetitive cycles, exhibiting an "intermittent failure" characteristic. This fluctuation of electrical contact properties was attributed to insulative carbonaceous contaminants repetitively formed and removed at the contact spot, corresponding to degradation and reestablishment of electrical contact. When contaminant film was formed, the contact interface became "metal/carbonaceous adsorbates/metal" instead of direct metal/metal contact, leading to degradation of the electrical contact state. Furthermore, a system of iridium/graphene on ruthenium (Ir/GrRu) was proposed to avoid direct metal/metal contact, which stabilized the current fluctuation and decreased interfacial adhesion significantly. The existence of graphene enabled less adsorption of carbonaceous contaminants in ambient air and enhanced mechanical protection against the repetitive hot switching actions. This work opens an avenue for design and fabrication of microscale electrical contact system, especially by utilizing two-dimensional materials.
664
Views
19
Downloads
9
Crossref
8
Web of Science
8
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.