Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Droplets impacting solid superhydrophobic surfaces is appealing not only because of scientific interests but also for technological applications such as water-repelling. Recent studies have designed artificial surfaces in a rigid–flexible hybrid mode to combine asymmetric redistribution and structural oscillation water-repelling principles, resolving strict impacting positioning; however, this is limited by weak mechanical durability. Here we propose a rigid–flexible hybrid surface (RFS) design as a matrix of concave flexible trampolines barred by convex rigid stripes. Such a surface exhibits a 20.1% contact time reduction via the structural oscillation of flexible trampolines, and even to break through the theoretical inertial-capillary limit via the asymmetric redistribution induced by rigid stripes. Moreover, the surface is shown to retain the above water-repelling after 1,000 abrasion cycles against oilstones under a normal load as high as 0.2 N·mm−1. This is the first demonstration of RFSs for synchronous waterproof and wearproof, approaching real-world applications of liquid-repelling.
574
Views
20
Downloads
1
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.