Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ionic liquids (ILs) have been used effectively in many applications for reducing problems related to friction and wear. In this work, the potential of ILs as an anti-wear and extreme pressure lubricant additive for high load-carrying gearbox applications such as helicopter transmissions has been studied. Two halide-free ILs: P8881(BuO)2PO2– (1) and P8881(MeO)2PO2– (2), which are blended at 5 wt% each into a standard non-additivated FVA2 base oil (BO) are examined. Their solid–liquid interface, friction and load-carrying capacity, and wear (scuffing) behavior are studied on the nano-, lab-, and component-scale, respectively, at a different range of temperature and loading conditions by using the atomic force microscopy (AFM), Schwing–Reib–Verschleiß (SRV) friction tests, and Brugger tests, as well as forschungsstelle für zahnräder und getriebebau (FZG) back-to-back gear test rig. The AFM analysis shows nearly no change of adhesion over the full range of studied temperature for the IL blends compared to the BO. Similarly, IL blends demonstrate a very stable coefficient of friction (COF) of around 0.16, which even decreases with increasing test temperatures ranging from 40 to 120 °C. A clear reduction in COF up to 25% is achieved by adding only 5 wt% of the investigated ILs in the BO, and the Brugger tests also show a pronounced enhancement of load-carrying capacity. Finally, on the component-scale, a significant improvement in gear scuffing performance has been observed for both used IL blends. A detailed characterization of the wear tracks from the SRV friction tests via the transmission electron microscopy (TEM) revealed the formation of a phosphate (P–O)-based amorphous tribo-chemical layer of about 20 nm thickness. Therefore, this work may present an approach for ILs to be used as an additive in conventional lubricants due to their ability to enhance the lubrication properties, making them an alternative lubricant solution for high load-carrying gearbox applications.
769
Views
35
Downloads
1
Crossref
0
Web of Science
2
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.