Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Shallow Hilbert curve patterns with easily programmable texture density were selected for laser texturing of stainless steel substrates. Two different texture path segment lengths (12 and 24 µm) and four different laser power percentages (5%, 10%, 15%, and 20%) were investigated. The textured and smooth substrates were coated with thin polydopamine/polytetrafluoroethylene (PDA/PTFE) coatings for tribological property assessment. The effects of texture density (texture area coverage) and laser power on the durability and friction of the coated surfaces were studied. Laser texturing the substrates improved the coating durability up to 25 times, reduced the friction coefficient, and prevented coating global delamination. The textures fabricated with a laser power of 15% and a texture path segment length of 12 µm yielded the best coating durability. The textures provided the interlocking for the PTFE coating and thus prevented its global delamination. Furthermore, the PTFE inside the texture grooves replenished the solid lubricant worn away in the wear track and prolonged the coating wear life.
535
Views
24
Downloads
5
Crossref
6
Web of Science
6
Scopus
1
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.