Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Polymer-textile liner composites have potential applications in aerospace applications for reducing the abrasion damage of moving parts during operation owing to their self-lubrication, light weight, and high loading capacity. Herein, Au nanoparticles (AuNPs) are successfully loaded into the lumen of halloysite nanotubes (HNTs) to construct an HNTs‒Au peasecod core‒shell nanosystem to optimize the wear resistance of phenolic resin-based poly(p-phenylene benzobisoxazole) (PBO)/polytetrafluoroethylene (PTFE) textile composites. Transmission electron microscope (TEM) characterization reveals that the AuNPs are well-dispersed inside the HNTs, with an average diameter of 6‒9 nm. The anti-wear performance of the HNTs and Au-reinforced PBO/PTFE composites is evaluated using a pin-on-disk friction tester at 100 MPa. Evidently, the addition of HNTs‒Au induces a 27.9% decrease in the wear rate of the composites. Possible anti-wear mechanisms are proposed based on the analyzed results of the worn surface morphology and the cross-section of the tribofilm obtained by focused ion beam transmission electron microscopy.
504
Views
18
Downloads
2
Crossref
2
Web of Science
3
Scopus
1
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.