Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Understanding the friction behavior of hydrogels is critical for the long-term stability of hydrogel-related bioengineering applications. Instead of maintaining a constant sliding velocity, the actual motion of bio-components (e.g., articular cartilage and cornea) often changes abruptly. Therefore, it is important to study the frictional properties of hydrogels serving under various sliding velocities. In this work, an unexpected low friction regime (friction coefficient μ < 10-4 at 1.05×10-3 rad/s) was observed when the polyacrylamide hydrogel was rotated against a glass substrate under alternative sliding velocity cycles. Interestingly, compared with the friction coefficients under constant sliding velocities, the measured μ decreased significantly when the sliding velocity changed abruptly from high speeds (e.g., 105 rad/s) to low speeds (e.g., 1.05×10-3 rad/s). In addition, μ exhibited a downswing trend at low speeds after experiencing more alternative sliding velocity cycles: the measured μ at 1.05 rad/s decreased from 2×10-2 to 3×10-3 after 10 friction cycles. It is found that the combined effect of hydration film and polymer network deformation determines the lubrication and drag reduction of hydrogels when the sliding velocity changes abruptly. The observed extremely low friction during alternative sliding velocity cycles can be applied to reduce friction at contacted interfaces. This work provides new insights into the fundamental understanding of the lubrication behaviors and mechanisms of hydrogels, with useful implications for the hydration lubrication related engineering applications such as artificial cartilage.
617
Views
13
Downloads
4
Crossref
3
Web of Science
4
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.