Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The nature of solid–liquid interfaces is of great significance in lubrication. Remarkable advances have been made in lubrication based on hydration effects. However, a detailed molecular-level understanding is still lacking. Here, we investigated water molecule behaviors at the TiO2–aqueous interfaces by the sum-frequency generation vibrational spectroscopy (SFG-VS) and atomic force microscope (AFM) to elucidate the fundamental role of solid–liquid interfaces in lubrication. Combined contributions of water structures and hydration effects were revealed, where water structures played the dominant role in lubrication for TiO2 surfaces of varying hydrophilicity, while hydration effects dominated with the increasing of ion concentrations. Superior lubrication is observed on the initial TiO2 surfaces with strongly H-bonded water molecules compared to the hydrophilic TiO2 surfaces with more disordered water. The stable ordered water arrangement with strong hydrogen bonds and the shear plane occurring between the ordered water layer and subsequent water layer may play a significant role in achieving lower friction. More adsorbed hydrated molecules with the increasing ionic concentration perturb ordered water but lead to the enhancement of hydration effects, which is the main reason for the improved lubrication for both TiO2. This work provides more insights into the detailed molecular-level understanding of the mechanism of hydration lubrication.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.