AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (5.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

A brief review of tribological properties for black phosphorus

Fanfan LV1Wei WANG1( )Jinjin LI2( )Yuan GAO1Kuaishe WANG1
College of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 10084, China
Show Author Information

Graphical Abstract

Abstract

Black phosphorus (BP) is a new class of two-dimensional (2D) layered material, which shows the unanticipated characteristics in many aspects including electronics, transistors, sensors, energy storage, batteries, photocatalysis, and other applications due to its high charge carrier mobility, tunable direct bandgap, and unique in-plane anisotropic structure. In addition, BP has drawn tremendous attention in the field of tribology due to the low shear strength, the layered structure, and the weak connected force between the layers by van der Waals interaction. In recent years, many significant progresses have been made in experimental studies on BP materials as solid lubricants or lubrication additives. This work offers a review of researching regarding the tribological properties of BP. Moreover, the lubrication mechanisms of BP as the lubrication additive including the formation of the tribo-film, micro-bearing effect, and self-repair performance are also summarized. Finally, the current challenges and prospects of BP material as lubricant are proposed.

References

[1]
Liu Y F, Ge X Y, Li J J. Graphene lubrication. Appl Mater Today 20: 100662 (2020)
[2]
Berman D, Erdemir A, Sumant A V. Graphene: A new emerging lubricant. Mater Today 17(1): 31–42 (2014)
[3]
Li M, Shi J L, Liu L Q, Yu P, Xi N, Wang Y C. Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2. Sci Technol Adv Mater 17(1): 189–199 (2016)
[4]
Wang Y X, Du Y Y, Deng J N, Wang Z P. Friction reduction of water based lubricant with highly dispersed functional MoS2 nanosheets. Colloid Surface A 562: 321–328 (2019)
[5]
Nasser K I, Liñeira del Río J M, López E R, Fernández J. Synergistic effects of hexagonal boron nitride nanoparticles and phosphonium ionic liquids as hybrid lubricant additives. J Mol Liq 311: 113343 (2020)
[6]
Sagbas B. Tribological performance of peek with green lubricant enhanced by nano hexagonal boron nitride powder. Ind Lubr Tribol 72(2): 203–210 (2018)
[7]
Yaqub TB, Bruyere S, Pierson J F, Vuchkov T, Cavaleiro A. Insights into the wear track evolution with sliding cycles of carbon-alloyed transition metal dichalcogenide coatings. Surf Coat Tech 403: 126360 (2020)
[8]
Polcar T, Cavaleiro A. Self-adaptive low friction coatings based on transition metal dichalcogenides. Thin Solid Films 519(12): 4037–4044 (2011)
[9]
Uzoma P C, Hu H A, Khadem M, Penkov O V. Tribology of 2D nanomaterials: A review. Coatings 10(9): 897 (2020)
[10]
Ji Z J, Zhang L, Xie G X, Xu W H, Guo D, Luo J B, Prakash B. Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction 8(5): 813–846 (2020)
[11]
Lee J H, Cho D H, Park B H, Choi J S. Nanotribology of 2D materials and their macroscopic applications. J Phys D Appl Phys 53(39): 393001 (2020)
[12]
Danilov A M, Bartko R V, Antonov S A. Current advances in the application and development of lubricating oil additives. Petrol Chem+ 61(1): 35–42 (2021)
[13]
Wang H D, Liu Y H. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 8(6): 1007–1024 (2020)
[14]
Xing C, Zhang J H, Jing J Y, Li J Z, Shi F. Preparations, properties and applications of low-dimensional black phosphorus. Chem Eng J 370: 120–135 (2019)
[15]
Chien N V, Shin H, Song J Y. Sn-assisted solid state crystallization of red phosphorus to black phosphorus. Scripta Mater 177: 128–131 (2020)
[16]
Aldave S H, Yogeesh M N, Zhu W N, Kim J, Sonde S S, Nayak A P, Akinwande D. Characterization and sonochemical synthesis of black phosphorus from red phosphorus. 2D Mater 3(1): 014007 (2016)
[17]
Ling X, Wang H, Huang S X, Xia F N, Dresselhaus M S. The renaissance of black phosphorus. PNAS 112(15): 4523–4530 (2015)
[18]
Pawbake A S, Erande M B, Jadkar S R, Late D J. Temperature dependent Raman spectroscopy of electrochemically exfoliated few layer black phosphorus nanosheets. RSC Adv 6(80): 76551–76555 (2016)
[19]
Du Y C, Maassen J, Wu W R, Luo Z, Xu X F, Ye P D. Auxetic black phosphorus: A 2D material with negative Poisson’s ratio. Nano Lett 16(10): 6701–6708 (2016)
[20]
Maruyama Y, Suzuki S, Kobayashi K, Tanuma S. Synthesis and some properties of black phosphorus single crystals. Physica B+C 105(1–3): 99–102 (1981)
[21]
Mu X, Wang J, Sun M. Two-dimensional black phosphorus: Physical properties and applications. Mater Today Phys 8: 92–111 (2019)
[22]
Brent J R, Savjani N, Lewis E A, Haigh S J, Lewis D J, O’Brien P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem Commun 50(87): 13338–13341 (2014)
[23]
Khandelwal A, Mani K, Karigerasi M H, Lahiri I. Phosphorene—The two-dimensional black phosphorous: Properties, synthesis and applications. Mater Sci Eng B 221: 17–34 (2017)
[24]
Li L, Zhang D, Deng J P, Gou Y C, Fang J F. Electrochemical exfoliation of two-dimensional layered black phosphorus and applications. J Energy Chem 49: 365–374 (2020)
[25]
Sun J E, Zheng G Y, Lee H W, Liu N A, Wang H T, Yao H B, Yang W S, Cui Y. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett 14(8): 4573–4580 (2014)
[26]
Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Black phosphorus field-effect transistors. Nat Nanotechnol 9(5): 372–377 (2014)
[27]
Xu J Y, Gao L F, Hu C X, Zhu Z Y, Zhao M, Wang Q, Zhang H L. Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem Commun 52(52): 8107–8110 (2016)
[28]
Veselý M, Marvan P, Trejbal J, Mazánek V, Luxa J, Šturala J, Sofer Z. Autogenous formation of gold on layered black phosphorus for catalytic purification of waste water. ACS Appl Mater Interfaces 12(20): 22702–22709 (2020)
[29]
Wang Y, Xue J L, Zhang X Y, Si J Q, Liu Y, Ma L F, Ullah M, Ikram M, Li L, Shi K Y. Novel intercalated CuO/black phosphorus nanocomposites: Fabrication, characterization and NO2 gas sensing at room temperature. Mat Sci Semicon Proc 110: 104961 (2020)
[30]
Chen W S, Ouyang J A, Yi X Y, Xu Y, Niu C C, Zhang W Y, Wang L Q, Sheng J P, Deng L, Liu Y N, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 30(3): 1703458 (2018)
[31]
Chhetry A, Sharma S, Barman S C, Yoon H, Ko S, Park C, Yoon S, Kim H, Park J Y. Black phosphorus@laser-engraved graphene heterostructure-based temperature–strain hybridized sensor for electronic-skin applications. Adv Funct Mater 31(10): 2007661 (2021)
[32]
Jia J Y, Jang S K, Lai S, Xu J A, Choi Y J, Park J H, Lee S. Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 9(9): 8729–8736 (2015)
[33]
Lee H U, Lee S C, Won J, Son B C, Choi S, Kim Y, Park S Y, Kim H S, Lee Y C, Lee J. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci Rep 5: 8691 (2015)
[34]
Lei W Y, Zhang T T, Liu P, Rodriguez J A, Liu G, Liu M H. Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids. ACS Catal 6(12): 8009–8020 (2016)
[35]
Liu X, Fan P J, Xiao L P, Weng J, Xu Q C, Xu J. Reduced Ti-MOFs encapsulated black phosphorus with high stability and enhanced photocatalytic activity. J Energy Chem 53: 185–191 (2021)
[36]
Zhou T Z, Ni H, Wang Y L, Wu C, Zhang H, Zhang J Q, Tomsia A P, Jiang L, Cheng Q F. Ultratough graphene–black phosphorus films. PNAS 117(16): 8727–8735 (2020)
[37]
Liu G, Tsai H I, Zeng X W, Qi J Y, Luo M M, Wang X S, Mei L, Deng W B. Black phosphorus nanosheets-based stable drug delivery system via drug-self-stabilization for combined photothermal and chemo cancer therapy. Chem Eng J 375: 121917 (2019)
[38]
Wang W, Xie G X, Luo J B. Black phosphorus as a new lubricant. Friction 6(1): 116–142 (2018)
[39]
Lv Y, Wang W, Xie G X, Luo J B. Self-lubricating PTFE-based composites with black phosphorus nanosheets. Tribol Lett 66(2): 61 (2018)
[40]
Peng S G, Guo Y, Xie G X, Luo J B. Tribological behavior of polytetrafluoroethylene coating reinforced with black phosphorus nanoparticles. Appl Surf Sci 441: 670–677 (2018)
[41]
Qiu S L, Ren X Y, Zhou X A, Zhang T, Song L, Hu Y A. Nacre-inspired black phosphorus/nanofibrillar cellulose composite film with enhanced mechanical properties and superior fire resistance. ACS Appl Mater Interfaces 12(32): 36639–36651 (2020)
[42]
Tian Y E, Wang H D, Li H N, Guo Z N, Tian B N, Cui Y X, Li Z F, Li G H, Zhang H, Wu Y C. Recent advances in black phosphorus/carbon hybrid composites: From improved stability to applications. J Mater Chem A 8(9): 4647–4676 (2020)
[43]
Chen H, Huang P, Guo D, Xie G X. Anisotropic mechanical properties of black phosphorus nanoribbons. J Phys Chem C 120(51): 29491–29497 (2016)
[44]
Tao J, Shen W F, Wu S, Liu L, Feng Z H, Wang C, Hu C G, Yao P, Zhang H, Pang W, et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9(11): 11362–11370 (2015)
[45]
Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H B, Wang S Y. Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 13(33): 1700758 (2017)
[46]
Sun Y J, Jin H, Jiang X W, Gui R J. Black phosphorus nanosheets adhering to thionine-doped 2D MOF as a smart aptasensor enabling accurate capture and ratiometric electrochemical detection of target microRNA. Sensor Actuat B-Chem 309: 127777 (2020)
[47]
Jiang J W, Park H S. Mechanical properties of single-layer black phosphorus. J Phys D Appl Phys 47(38): 385304 (2014)
[48]
Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5: 4458 (2014)
[49]
Wang X M, Jones A M, Seyler K L, Tran V, Jia Y C, Zhao H, Wang H, Yang L, Xu X D, Xia F N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol 10(6): 517–521 (2015)
[50]
Fei R X, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett 14(5): 2884–2889 (2014)
[51]
Bai L C, Liu B, Srikanth N, Tian Y, Zhou K. Nano-friction behavior of phosphorene. Nanotechnology 28(35): 355704 (2017)
[52]
Cui Z Y, Xie G X, He F, Wang W Q, Guo D, Wang W. Atomic-scale friction of black phosphorus: Effect of thickness and anisotropic behavior. Adv Mater Interfaces 4(23): 1700998 (2017)
[53]
Gong H J, Zhu P Z, Si L N, Zhang X Q, Xie G X. “M-shape” nanoscale friction anisotropy of phosphorene. Comp Mater Sci 150: 364–368 (2018)
[54]
Lee H G, Yoon H M, Lee J S. Anisotropic nanoscale and sub-nanoscale friction behaviors between phosphorene and silicon tip. Appl Surf Sci 481: 1573–1584 (2019)
[55]
Losi G, Restuccia P, Righi M C. Superlubricity in phosphorene identified by means of ab initio calculations. 2D Mater 7(2): 025033 (2020)
[56]
Lee J Y, Lim D P, Lim D S. Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles. Compos Part B-Eng 38(7–8): 810–816 (2007)
[57]
Beckford S, Mathurin L, Chen J Y, Fleming R A, Zou M. The effects of polydopamine coated Cu nanoparticles on the tribological properties of polydopamine/PTFE coatings. Tribol Int 103: 87–94 (2016)
[58]
Beckford S, Wang Y A, Zou M. Wear-resistant PTFE/SiO2 nanoparticle composite films. Tribol Trans 54(6): 849–858 (2011)
[59]
Czarny R, Paszkowski M. The influence of graphite solid additives, MoS2 and PTFE on changes in shear stress values in lubricating greases. J Synth Lubr 24(1): 19–29 (2007)
[60]
Bandeira P, Monteiro J, Baptista A M, Magalhães F D. Influence of oxidized graphene nanoplatelets and [DMIM][NTf2] ionic liquid on the tribological performance of an epoxy–PTFE coating. Tribol Int 97: 478–489 (2016)
[61]
Song F Z, Wang Q H, Wang T M. Effects of glass fiber and molybdenum disulfide on tribological behaviors and Pv limit of chopped carbon fiber reinforced Polytetrafluoroethylene composites. Tribol Int 104: 392–401 (2016)
[62]
Ren Y L, Zhang L, Xie G X, Li Z B, Chen H, Gong H J, Xu W H, Guo D, Luo J B. A review on tribology of polymer composite coatings. Friction 9(3): 429–470 (2021)
[63]
Zhang L L, Tang Y L, Khan A R, Hasan M M, Wang P, Yan H, Yildirim T, Torres J F, Neupane G P, Zhang Y P, et al. 2D materials and heterostructures at extreme pressure. Adv Sci 7(24): 2002697 (2020)
[64]
Jiang J W, Park H S. A Gaussian treatment for the friction issue of Lennard–Jones potential in layered materials: Application to friction between graphene, MoS2, and black phosphorus. J Appl Phys 117(12): 124304 (2015)
[65]
Hemmat Esfe M, Bahiraei M, Mir A. Application of conventional and hybrid nanofluids in different machining processes: A critical review. Adv Colloid Interfac 282: 102199 (2020)
[66]
Zhao J, Huang Y Y, He Y Y, Shi Y J. Nanolubricant additives: A review. Friction 9(5): 891–917 (2021)
[67]
Hua A P, Zhao J H, Wei N. A black phosphorus nanoconveyor belt system. Appl Phys Lett 115(24): 243103 (2019)
[68]
Deng L J, Wan L, Zhou N, Tang S, Li Y. Anisotropy diffusion of water nanodroplets on phosphorene: Effects of pre-compressive deformation and temperature. Comp Mater Sci 178: 109623 (2020)
[69]
Laxmi V, Dong W L, Wang H Q, Qi D Y, Hao Q Y, Ouyang Z B, Ahmad W, Shah M N U, Yuan Q H, Zhang W J. Protecting black phosphorus with selectively adsorbed graphene quantum dot layers. Appl Surf Sci 538: 148089 (2021)
[70]
Nilges T, Kersting M, Pfeifer T. A fast low-pressure transport route to large black phosphorus single crystals. J Solid State Chem 181(8): 1707–1711 (2008)
[71]
Kitada S, Shimizu N, Hossain M Z. Safe and fast synthesis of black phosphorus and its purification. ACS Omega 5(20): 11389–11393 (2020)
[72]
Gao Z T, Geng H M, Qiao Z H, Sun B, Gao Z M, Zhang C W. In situ TiBX/TiXNiY/TiC reinforced Ni60 composites by laser cladding and its effect on the tribological properties. Ceramics International 49(4): 6409–6418 (2023)
[73]
Wang Q J, Hou T L, Wang W, Zhang G L, Gao Y A, Wang K S. Tribological properties of black phosphorus nanosheets as oil-based lubricant additives for titanium alloy-steel contacts. Roy Soc Open Sci 7(9): 200530 (2020)
[74]
Hyun C, Kim J H, Lee J Y, Lee G H, Kim K S. Atomic scale study of black phosphorus degradation. RSC Adv 10(1): 350–355 (2020)
[75]
Zhang T M, Wan Y Y, Xie H Y, Mu Y, Du P W, Wang D, Wu X J, Ji H X, Wan L J. Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J Am Chem Soc 140(24): 7561–7567 (2018)
[76]
Island J O, Steele G A, van der Zant H S J, Castellanos-Gomez A. Environmental instability of few-layer black phosphorus. 2D Mater 2(1): 011002 (2015)
[77]
Tang G B, Su F H, Xu X, Chu P K. 2D black phosphorus dotted with silver nanoparticles: An excellent lubricant additive for tribological applications. Chem Eng J 392: 123631 (2020)
[78]
Xu Y F, Yu J Y, Dong Y H, You T, Hu X G. Boundary lubricating properties of black phosphorus nanosheets in polyalphaolefin oil. J Tribol 141(7): 072101 (2019)
[79]
Luo Z H, Yu J Y, Xu Y F, Xi H, Cheng G, Yao L L, Song R H, Dearn K D. Surface characterization of steel/steel contact lubricated by PAO6 with novel black phosphorus nanocomposites. Friction 9(4): 723–733 (2021)
[80]
Zhai W Z, Zhou K. Nanomaterials in superlubricity. Adv Funct Mater 29(28): 1806395 (2019)
[81]
Tang G B, Wu Z B, Su F H, Wang H D, Xu X, Li Q A, Ma G Z, Chu P K. Macroscale superlubricity on engineering steel in the presence of black phosphorus. Nano Lett 21(12): 5308–5315 (2021)
[82]
Yi S, Li J J, Rao J S, Ma X Y, Zhang Y X. Alkyl-functionalized black phosphorus nanosheets triggers macroscale superlubricity on diamond-like carbon film. Chem Eng J 449: 137764 (2022)
[83]
Gong H J, Yu C C, Zhang L, Xie G X, Guo D, Luo J B. Intelligent lubricating materials: A review. Compos Part B-Eng 202: 108450 (2020)
[84]
Zhang W. A review of tribological properties for boron carbide ceramics. Prog Mater Sci 116: 100718 (2021)
[85]
Tarelho J P G, Soares dos Santos M P, Ferreira J A F, Ramos A, Kopyl S, Kim S O, Hong S, Kholkin A. Graphene-based materials and structures for energy harvesting with fluids—A review. Mater Today 21(10): 1019–1041 (2018)
[86]
Katna R, Suhaib M, Agrawal N. Nonedible vegetable oil-based cutting fluids for machining processes—A review. Mater Manuf Process 35(1): 1–32 (2020)
[87]
Xiao H P, Liu S H, Xu Q, Zhang H. Carbon quantum dots: An innovative additive for water lubrication. Sci China Technol Sc 62(4): 587–596 (2019)
[88]
Gong K L, Lou W J, Zhao G Q, Wu X H, Wang X B. Investigation on tribological behaviors of MoS2 and WS2 quantum dots as lubricant additives in ionic liquids under severe conditions. Friction 8(4): 674–683 (2020)
[89]
Uflyand I E, Zhinzhilo V A, Burlakova V E. Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development. Friction 7(2): 93–116 (2019)
[90]
Eickworth J, Aydin E, Dienwiebel M, Rühle T, Wilke P, Umbach T R. Synergistic effects of antiwear and friction modifier additives. Ind Lubr Tribol 72(8): 1019–1025 (2020)
[91]
Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N. Anisotropic interfacial properties between monolayered black phosphorus and water. Appl Surf Sci 475: 857–862 (2019)
[92]
Wu S A, He F, Xie G X, Bian Z L, Luo J B, Wen S Z. Black phosphorus: Degradation favors lubrication. Nano Lett 18(9): 5618–5627 (2018)
[93]
Wang Y E, Yang B C, Wan B S, Xi X K, Zeng Z M, Liu E K, Wu G H, Liu Z Y, Wang W H. Degradation of black phosphorus: A real-time 31P NMR study. 2D Mater 3(3): 035025 (2016)
[94]
Huang Y A, Qiao J S, He K, Bliznakov S, Sutter E, Chen X J, Luo D, Meng F K, Su D, Decker J, et al. Interaction of black phosphorus with oxygen and water. Chem Mater 28(22): 8330–8339 (2016)
[95]
Wu S A, He F, Xie G X, Bian Z L, Ren Y L, Liu X Y, Yang H J, Guo D, Zhang L, Wen S Z, et al. Super-slippery degraded black phosphorus/silicon dioxide interface. ACS Appl Mater Interfaces 12(6): 7717–7726 (2020)
[96]
Wang Q J, Hou T L, Wang W, Zhang G L, Gao Y, Wang K S. Tribological behavior of black phosphorus nanosheets as water-based lubrication additives. Friction 10(3): 374–387 (2022)
[97]
Wang W, Dong S W, Gao Y, Zhang G L, Wang K S. Tribological behaviours of black phosphorus/MoS2 composites as water-based lubrication additives. Lubr Sci 33(7): 404–416 (2021)
[98]
Guo P F, Qi S S, Chen L, Gou C X, Lin B, Lu Z B, Wu Z G, Zhang G G. Black phosphorus–graphene oxide hybrid nanomaterials toward advanced lubricating properties under water. Adv Mater Interfaces 6(23): 1901174 (2019)
[99]
Tang W W, Jiang Z Q, Wang B G, Li Y F. Black phosphorus quantum dots: A new-type of water-based high-efficiency lubricant additive. Friction 9(6): 1528–1542 (2021)
[100]
Mutyala K C, Doll G L, Wen J G, Sumant A V. Superlubricity in rolling/sliding contacts. Appl Phys Lett 115(10): 103103 (2019)
[101]
Chen Z, Liu Y H, Luo J B. Superlubricity of nanodiamonds glycerol colloidal solution between steel surfaces. Colloid Surface A 489: 400–406 (2016)
[102]
Ma W, Gong Z B, Gao K X, Qiang L, Zhang J Y, Yu S R. Superlubricity achieved by carbon quantum dots in ionic liquid. Mater Lett 195: 220–223 (2017)
[103]
Han T Y, Zhang C H, Luo J B. Macroscale superlubricity enabled by hydrated alkali metal ions. Langmuir 34(38): 11281–11291 (2018)
[104]
Chen X C, Yin X A, Qi W, Zhang C H, Choi J, Wu S D, Wang R, Luo J B. Atomic-scale insights into the interfacial instability of superlubricity in hydrogenated amorphous carbon films. Sci Adv 6(13): eaay1272 (2020)
[105]
Liu W R, Wang H D, Liu Y H, Zhang C X, Luo J B. Controllable superlubricity system of polyalkylene glycol aqueous solutions under various applied conditions. Macromol Mater Eng 305(7): 2000141 (2020)
[106]
Li J J, Gao T Y, Luo J B. Superlubricity of graphite induced by multiple transferred graphene nanoflakes. Adv Sci 5(3): 1700616 (2018)
[107]
Chen X C, Li J J. Superlubricity of carbon nanostructures. Carbon 158: 1–23 (2020)
[108]
Baykara M Z, Vazirisereshk M R, Martini A. Emerging superlubricity: A review of the state of the art and perspectives on future research. Appl Phys Rev 5(4): 041102 (2018)
[109]
Li S W, Bai P P, Li Y Z, Jia W P, Li X X, Meng Y G, Ma L R, Tian Y. Extreme-pressure superlubricity of polymer solution enhanced with hydrated salt ions. Langmuir 36(24): 6765–6774 (2020)
[110]
Zhou F C, Ouyang L Z, Zeng M Q, Liu J W, Wang H, Shao H Y, Zhu M. Growth mechanism of black phosphorus synthesized by different ball milling techniques. J Alloys Compd 784: 339–346 (2019)
[111]
Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Lévesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater 14(8): 826–832 (2015)
[112]
Wang W, Xie G X, Luo J B. Superlubricity of black phosphorus as lubricant additive. ACS Appl Mater Interfaces 10(49): 43203–43210 (2018)
[113]
Ren X Y, Yang X A, Xie G X, He F, Wang R, Zhang C H, Guo D, Luo J B. Superlubricity under ultrahigh contact pressure enabled by partially oxidized black phosphorus nanosheets. NPJ 2D Mater Appl 5: 44 (2021)
[114]
Ren X Y, Yang X, Xie G X, Luo J B. Black phosphorus quantum dots in aqueous ethylene glycol for macroscale superlubricity. ACS Appl Nano Mater 3(5): 4799–4809 (2020)
[115]
Liu Y F, Li J F, Li J J, Yi S, Ge X Y, Zhang X, Luo J B. Shear-induced interfacial structural conversion triggers macroscale superlubricity: From black phosphorus nanoflakes to phosphorus oxide. ACS Appl Mater Interfaces 13(27): 31947–31956 (2021)
Friction
Pages 823-844
Cite this article:
LV F, WANG W, LI J, et al. A brief review of tribological properties for black phosphorus. Friction, 2024, 12(5): 823-844. https://doi.org/10.1007/s40544-023-0758-2

389

Views

31

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 27 July 2022
Revised: 09 October 2022
Accepted: 08 March 2023
Published: 24 August 2023
© The author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return