Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The roughness of the contact surface exerts a vital role in rubbing. It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level. Herein, the rough surface with a special root mean square (RMS) value is constructed by multivariate Weierstrass–Mandelbrot (W–M) function and the rubbing process during that the chemical mechanical polishing (CMP) process of diamond is mimicked utilizing the reactive force field molecular dynamics (ReaxFF MD) simulation. It is found that the contact area A/A0 is positively related with the load, and the friction force F depends on the number of interfacial bridge bonds. Increasing the surface roughness will increase the friction force and friction coefficient. The model with low roughness and high lubrication has less friction force, and the presence of polishing liquid molecules can decrease the friction force and friction coefficient. The RMS value and the degree of damage show a functional relationship with the applied load and lubrication, i.e., the RMS value decreases more under larger load and higher lubrication, and the diamond substrate occurs severer damage under larger load and lower lubrication. This work will generate fresh insight into the understanding of the microscopic contact of the rough surface at the atomic level.
445
Views
29
Downloads
5
Crossref
5
Web of Science
6
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.