Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
1-(4-ethylphenyl)-nonane-1,3-dione (0206) is an oil-soluble liquid molecule with rod-like structure. In this study, the chelate (0206-Fe) with octahedral structure was prepared by the reaction of ferric chloride and 1,3-diketone. The experimental results show that when using 0206 and a mixed solution containing 60% 0206-Fe and 40% 0206 (0206-Fe(60%)) as lubricants of the steel friction pairs, superlubricity can be achieved (0.007, 0.006). But their wear scar diameters (WSD) were very large (532 μm, 370 μm), which resulted in the pressure of only 44.3 and 61.8 MPa in the contact areas of the friction pairs. When 0206-Fe(60%) was mixed with PAO6, it was found that the friction coefficient (COF) decreased with increase of 0206-Fe(60%) in the solution. When the ratio of 0206-Fe(60%) to PAO6 was 8:2 (PAO6(20%)), it exhibited better comprehensive tribological properties (232.3 MPa). Subsequent studies have shown that reducing the viscosity of the base oil in the mixed solution helped to reduce COF and increased WSD. Considering the COF, contact pressure, and running-in time, it was found that the mixed lubricant (Oil3(20%)) prepared by the base oil with a viscosity of 19.7 mPa∙s (Oil3) and 0206-Fe(60%) exhibited the best tribological properties ( 0.007, 161.4 MPa, 3,100 s).
511
Views
18
Downloads
3
Crossref
3
Web of Science
3
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.