Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The interfacial adhesion between microstructures is inevitable in a micro-electro-mechanical system (e.g., hard disk drive (HDD)), which may lead to complicated microtribodynamics problems. This research has investigated the effect of surface potential on the interfacial adhesion and microtribodynamics of the head–disk interface (HDI) in an HDD. A dynamic continuum surface force model, where the electrowetting is considered, is proposed to evaluate the interfacial interaction, and then employed into a two-degree-of-freedom (2DOF) model to theoretically analyze the potential influence mechanism on the microtribodynamics. The results confirm that the elimination of potential can effectively repress the adhesion retention, which is further proved by the measured slider response with a laser Doppler vibrometer (LDV). Moreover, the effect of the potential on the adhesion-induced instability is also analyzed through the phase portrait. It tells that the critical stable flying height can be lowered with the elimination of potential.
440
Views
17
Downloads
3
Crossref
5
Web of Science
3
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.