Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
General reductions in lubricant viscosities and increasing loads in machine components highlight the role of tribofilms in providing surface protection against scuffing. However, the relationship between the scuffing process and the growth and removal of tribofilm is not well understood. In this study, a multiphysics coupling model, which includes hydrodynamic lubrication, asperity contact, thermal effect, tribochemistry reaction, friction, and surface wear, was developed to capture the initiation of surface scuffing. Simulations and experiments for a piston ring and cylinder liner contact were conducted following a step-load sequence under different temperature conditions. The results show that high temperature and extreme load could induce the lubricant film collapse, which in turn triggers the breakdown of the tribofilm due to the significantly increased removal process. The failures of both lubricant film and tribofilm progress instantaneously in a coupling way, which finally leads to severe scuffing.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.