AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (3.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effects of surface morphology on tribological properties of Arapaima gigas scales

Shuaijun ZHANG1,2Pengpeng BAI1Xiangli WEN1Chengwei WEN1Hui CAO1Wanyou YANG1Yu TIAN1( )
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
Show Author Information

Graphical Abstract

Abstract

The remarkable mechanical adaptability of arapaima (Arapaima gigas) scales has made them an important subject of study. However, no research has been conducted into their tribological properties, which are crucial for the protectability and flexibility of arapaimas. In this study, by combining morphological characterizations, friction experiments, and theoretical analyses, the relationship between the surface morphology and tribological properties of arapaima scales is determined. These results indicate that arapaima scales exhibit varying surface morphologies in different regions. More specifically, the exposed regions of scales feature grooves and a circulus, whereas the covered regions exhibit bumps. The specific surface morphology of arapaima scales produces varying tribological properties across different regions and sliding directions. The unique tribological properties of arapaima scales influence the forces received from predator attacks and neighboring scales, directly influencing the arapaima’s protective capabilities. This study provides new insights into the mechanisms of natural flexible dermal armors, and it has potential applications in personal protective systems.

References

[1]
Yang W, Chen I H, Gludovatz B, Zimmermann E A, Ritchie R O, Meyers M A. Natural flexible dermal armor. Adv Mater 25(1): 31–48 (2013)
[2]
Yang W, Sherman V R, Gludovatz B, Mackey M, Zimmermann E A, Chang E H, Schaible E, Qin Z, Buehler M J, Ritchie R O, Meyers M A. Protective role of Arapaima gigas fish scales: Structure and mechanical behavior. Acta Biomater 10(8): 3599–3614 (2014)
[3]
Zavattieri P D. Tango with the Piranhas. Matter 2(1): 23–25 (2020)
[4]
Meyers M A, Lin Y S, Olevsky E A, Chen P Y. Battle in the amazon: Arapaima versus Piranha. Adv Eng Mater 14(5): B279–B288 (2012)
[5]
Bezerra W B A, Monteiro S N, Oliveira M S, da Luz F S, Garcia F D, Demosthenes L C D, Costa U O. Processing and characterization of Arapaima gigas scales and their reinforced epoxy composites. J Mater Res Technol 9(3): 3005–3012 (2020)
[6]
Estrada S, Munera J C, Hernandez J, Arroyave M, Arola D, Ossa A. Bioinspired hierarchical impact tolerant materials. Bioinspir Biomim 15(4): 046009 (2020)
[7]
Chandler M Q, Allison P G, Rodriguez R I, Moser R D, Kennedy A J. Finite element modeling of multilayered structures of fish scales. J Mech Behav Biomed Mater 40: 375–389 (2014)
[8]
Lin Y S, Wei C T, Olevsky E A, Meyers M A. Mechanical properties and the laminate structure of Arapaima gigas scales. J Mech Behav Biomed Mater 4(7): 1145–1156 (2011)
[9]
Torres F G, De la Torre D, Merino M. Dynamic mechanical analysis of fish dermal armour from A. gigas and P. pardalis. Bioinspir Biomim Nan 4(3): 199–206 (2015)
[10]
Gil-Duran S, Arola D, Ossa E A. Effect of chemical composition and microstructure on the mechanical behavior of fish scales from Megalops Atlanticus. J Mech Behav Biomed Mater 56: 134–145 (2016)
[11]
Troncoso O P, Gigos F, Torres F G. Mineral and water content of A-gigas scales determine local micromechanical properties and energy dissipation mechanisms. Mech Time-Depend Mater 21(4): 613–625 (2017)
[12]
Arola D, Murcia S, Stossel M, Pahuja R, Linley T, Devaraj A, Ramulu M, Ossa E A, Wang J. The limiting layer of fish scales: Structure and properties. Acta Biomater 67: 319–330 (2018)
[13]
Drelich A J, Monteiro S N, Brookins J, Drelich J W. Fish skin: A natural inspiration for innovation. Adv Biosyst 2(7): 1800055 (2018)
[14]
Torres F G, Le Bourhis E, Troncoso O P, Llamoza J. Structure-property relationships in Arapaima gigas scales revealed by nanoindentation tests. Polym Polym Compos 22(4): 369–373 (2014)
[15]
Murcia S, Lavoie E, Linley T, Devaraj A, Ossa E A, Arola D. The natural armors of fish: A comparison of the lamination pattern and structure of scales. J Mech Behav Biomed Mater 73: 17–27 (2017)
[16]
Jiang H Y, Ghods S, Weller E, Waddell S, Peng G J, Yang F J, Arola D. Importance of radial line and circulus distributions to the protectoflexibility of scales in fish armors. Cell Rep Phys Sci 3(9): 101022 (2022)
[17]
Sherman V R, Quan H C, Yang W, Ritchie R O, Meyers M A. A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula. J Mech Behav Biomed Mater 73: 1–16 (2017)
[18]
Zimmermann E A, Gludovatz B, Schaible E, Dave N K N, Yang W, Meyers M A, Ritchie R O. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat Commun 4: 2634 (2013)
[19]
Yin S, Yang W, Kwon J, Wat A, Meyers M A, Ritchie R O. Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials. J Mech Phys Solids 131: 204–220 (2019)
[20]
Pinto F, Iervolino O, Scarselli G, Ginzburg D, Meo M. Bioinspired twisted composites based on Bouligand structures. In Proceedings of the Conference on Bioinspiration, Biomimetics, and Bioreplication, Las Vegas, USA, 2016: 97970E.
[21]
Torres F G, Malasquez M, Troncoso O P. Impact and fracture analysis of fish scales from Arapaima gigas. Mater Sci Eng C-Mater Biol Appl 51: 153–157 (2015)
[22]
Torres F G, Troncoso O P, Amaya E. The effect of water on the thermal transitions of fish scales from Arapaima Gigas. Mater Sci Eng C-Mater Biol Appl 32(8): 2212–2214 (2012)
[23]
Torres F G, Troncoso O P, Nakamatsu J, Grande C J, Gomez C M. Characterization of the nanocomposite laminate structure occurring in fish scales from Arapaima Gigas. Mater Sci Eng C-Biomimetic Supramol Syst 28(8): 1276–1283 (2008)
[24]
Murcia S, Li G H, Yahyazadehfar M, Sasser M, Ossa A, Arola D. Effects of polar solvents on the mechanical behavior of fish scales. Mater Sci Eng C-Mater Biol Appl 61: 23–31 (2016)
[25]
Liu P, Zhu D J, Yao Y M, Wang J W, Bui T Q. Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system. Mater Des 99: 201–210 (2016)
[26]
Chen A L, Thind K, Demir K G, Gu G X. Modeling bioinspired fish scale designs via a geometric and numerical approach. Materials 14(18): 5378 (2021)
[27]
Murcia S, Miyamoto Y, Varma M P, Ossa A, Arola D. Contributions of the layer topology and mineral content to the elastic modulus and strength of fish scales. J Mech Behav Biomed Mater 78: 56–64 (2018)
[28]
Zhu D J, Szewciw L, Vernerey F, Barthelat F. Puncture resistance of the scaled skin from striped bass: Collective mechanisms and inspiration for new flexible armor designs. J Mech Behav Biomed Mater 24: 30–40 (2013)
[29]
Ghosh R, Ebrahimi H, Vaziri A. Contact kinematics of biomimetic scales. Appl Phys Lett 105(23): 233701 (2014)
[30]
Martini R, Balit Y, Barthelat F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomater 55: 360–372 (2017)
[31]
Rudykh S, Ortiz C, Boyce M C. Flexibility and protection by design: Imbricated hybrid microstructures of bio-inspired armor. Soft Matte 11(13): 2547–2554 (2015)
[32]
Luxinger A O, Cavali J, Porto M O, Sales-Neto H M, Lago A A, Freitas R T F. Morphometric measurements applied in the evaluation of Arapaima gigas body components. Aquaculture 489: 80–84 (2018)
[33]
Krell A. Load dependence of hardness in sintered submicrometer Al2O3 and ZrO2. J Am Ceram Soc 78(5): 1417–1419 (1995)
[34]
Meng Y G, Xu J, Ma L R, Jin Z M, Prakash B, Ma T B, Wang W Z. A review of advances in tribology in 2020–2021. Friction 10(10): 1443–1595 (2022)
[35]
Cui S G, Liu Y Z, Wang T, Tieu K, Wang L, Zeng D H, Li Z, Li W. Tribological behavior comparisons of high chromium stainless and mild steels against high-speed steel and ceramics at high temperatures. Friction 10(3): 436–453 (2022)
[36]
Zhang X G, Zhang Y L, Jin Z M. A review of the bio-tribology of medical devices. Friction 10(1): 4–30 (2022)
[37]
Xu W H, Yu S K, Zhong M. A review on food oral tribology. Friction 10(12): 1927–1966 (2022)
[38]
Wainwright D K, Lauder G V. Mucus matters: The slippery and complex surfaces of fish. In Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB), San Francisco, USA, 2018: E443–E443.
[39]
Chen L, Qian L M. Role of interfacial water in adhesion, friction, and wear—A critical review. Friction 9(1): 1–28 (2021)
[40]
Liu M, Ma L R. Drag reduction methods at solid–liquid interfaces. Friction 10(4): 491–515 (2022)
[41]
Kim S J, Kim H N, Lee S J, Sung H J. A lubricant-infused slip surface for drag reduction. Phys Fluids 32(9): 091901 (2020)
[42]
Zhang K S, Ma C F, Zhang B C, Zhao B, Wang Q. Numerical simulation study on bionic mucus drag reduction of underwater vehicle. Int J Fluid Mech Res 47(4): 371–385 (2020)
[43]
Liu H, Yang B M, Wang C, Han Y S, Liu D M. The mechanisms and applications of friction energy dissipation. Friction 11(6): 839–864 (2023)
Friction
Pages 1469-1482
Cite this article:
ZHANG S, BAI P, WEN X, et al. Effects of surface morphology on tribological properties of Arapaima gigas scales. Friction, 2024, 12(7): 1469-1482. https://doi.org/10.1007/s40544-023-0806-y

140

Views

6

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 February 2023
Revised: 12 June 2023
Accepted: 17 July 2023
Published: 21 October 2023
© The author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return