Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The formation of tribolayers may play significant influences on fretting wear. At elevated temperature, the adhesion among wear debris and the increased diffusion rate facilitate the formation of tribolayers. However, the intensification of oxidation at elevated temperature and the low diffusion rate in oxides may play an adverse role. The present study aims to investigate the role of temperature in tribolayers in fretting wear using a γ-TiAl alloy. Scanning electron microscope, energy dispersive spectrometer, Raman spectrometer, transmission electron microscope and nanoindentation were utilized to investigate the wear debris, tribolayers, and wear scars. The fretting tests showed that, compared with that at room temperature (RT) and 350 °C, significant reduction in wear rate and decrease in the fluctuation of friction coefficient occurred at 550 and 750 °C. It was further revealed that when temperature raised from room temperature (RT) to 750 °C, the oxidation of the wear debris increased slightly and the diffusion coefficients increased prominently, which facilities the formation of well tribo-sintered tribolayers. The well tribo-sintered tribolayers presented homogenous structure, nanocrystalline grains with excellent mechanical properties, and resulted in the improvement in the fretting wear resistance of the γ-TiAl alloy at 550 and 750 °C.
374
Views
10
Downloads
4
Crossref
3
Web of Science
5
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.