AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Nano-frictional mechano-reinforcing porous nanowires scaffolds

Licheng HUA1,2,3,( )Conghu HU1,Jingkang ZHANG1Jin LI1Chenjie GU4Bin HUANG1Guangyong LI1Jianke DU1Wanlin GUO2( )
Smart Materials and Advanced Structures Laboratory, School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China
Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Key Laboratory of Impact and Safety Engineering, Ministry of Education, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
Department of Microelectronics and Engineering, Ningbo University, Ningbo 315211, China

Licheng HUA and Conghu HU contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Artificial biomaterials with dynamic mechano-responsive behaviors similar to those of biological tissues have been drawing great attention. In this study, we report a TiO2-based nanowire (TiO2NWs) scaffolds, which exhibit dynamic mechano-responsive behaviors varying with the number and amplitude of nano-deformation cycles. It is found that the elastic and adhesive forces in the TiO2NWs scaffolds can increase significantly after multiple cycles of nano-deformation. Further nanofriction experiments show the triboelectric effect of increasing elastic and adhesive forces during the nano-deformation cycles of TiO2NWs scaffolds. These properties allow the TiO2NW scaffolds to be designed and applied as intelligent artificial biomaterials to simulate biological tissues in the future.

References

[1]
Huebsch N, Mooney D J. Inspiration and application in the evolution of biomaterials. Nature 462(7272): 426432 (2009)
[2]
Pande S, Dhatrak P. Recent developments and advancements in knee implants materials, manufacturing: A review. Mater Today 46: 756762 (2021)
[3]
Ratner B D, Bryant S J. Biomaterials: Where we have been and where we are going. Annu Rev Biomed Eng 6: 4175 (2004)
[4]
Anju M S, Raj D K, Madathil B K, Kasoju N, Anil Kumar P R. Intelligent biomaterials for tissue engineering and biomedical applications: Current landscape and future prospects. In Biomaterials in Tissue Engineering and Regenerative Medicine. Singapore: Springer, 2021: 535560.
[5]
Kowalski P S, Bhattacharya C, Afewerki S, Langer R. Smart biomaterials: Recent advances and future directions. ACS Biomater Sci Eng 4(11): 38093817 (2018)
[6]
Chang L C, Read T A. Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase. JOM 3(1): 4752 (1951)
[7]
Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5): 14751477 (1963)
[8]
Cutright D E, Bhaskar S N, Perez B, Johnson R M, Cowan G S M. Tissue reaction to nitinol wire alloy. Oral Surg Oral Med Oral Pathol 35(4): 578584 (1973)
[9]
Echigo S, Matsuda T, Kamiya T, Tsuda E, Suda K, Kuroe K, Ono Y, Yazawa K. Development of a new transvenous patent ductus arteriosus occlusion technique using a shape memory polymer. ASAIO Trans 36(3): M195M198 (1990)
[10]
Bellin I, Kelch S, Langer R, Lendlein A. Polymeric triple-shape materials. Proc Natl Acad Sci U S A 103(48): 1804318047 (2006)
[11]
Chung T, Romo-Uribe A, Mather P T. Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1): 184192 (2008)
[12]
Liu G Y, Qiu Q A, An Z S. Development of thermosensitive copolymers of poly(2-methoxyethyl acrylate-co-poly(ethylene glycol) methyl ether acrylate) and their nanogels synthesized by RAFT dispersion polymerization in water. Polym Chem 3(2): 504513 (2012)
[13]
Wu J T, Yuan C, Ding Z, Isakov M, Mao Y Q, Wang T J, Dunn M L, Qi H J. Multi-shape active composites by 3D printing of digital shape memory polymers. Sci Rep 6: 24224 (2016)
[14]
Chen M C, Chang Y, Liu C T, Lai W Y, Peng S F, Hung Y W, Tsai H W, Sung H W. The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials 30(1): 7988 (2009)
[15]
Kim Y J, Matsunaga Y T. Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B 5(23): 43074321 (2017)
[16]
Li L, Scheiger J M, Levkin P A. Design and applications of photoresponsive hydrogels. Adv Mater 31(26): 1807333 (2019)
[17]
Guan X W, Guo Z P, Lin L, Chen J E, Tian H Y, Chen X S. Ultrasensitive pH triggered charge/size dual-rebound gene delivery system. Nano Lett 16(11): 68236831 (2016)
[18]
Adedoyin A A, Ekenseair A K. Biomedical applications of magneto-responsive scaffolds. Nano Res 11: 50495064 (2018)
[19]
Tandon B, Magaz A, Balint R, Blaker J J, Cartmell S H. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev 129: 148168 (2018)
[20]
Hu Q Y, Katti P S, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6(21): 1227312286 (2014)
[21]
Lee S H, Gupta M K, Bang J B, Bae H, Sung H J. Current progress in Reactive Oxygen Species (ROS)-Responsive materials for biomedical applications. Adv Healthc Mater 2(6): 908915 (2013)
[22]
Keane T J, Badylak S F. Biomaterials for tissue engineering applications. Semin Pediatr Surg 23(3): 112118 (2014)
[23]
Zhang J Y, Jiang X A, Wen X A, Xu Q A, Zeng H, Zhao Y X, Liu M, Wang Z Y, Hu X F, Wang Y B. Bio-responsive smart polymers and biomedical applications. J Phys Mater 2(3): 032004 (2019)
[24]
Ruff C, Holt B, Trinkaus E. Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol 129(4): 484498 (2006)
[25]
Ungar P. Strong teeth, strong seeds. Nature 452(7188): 703704 (2008)
[26]
Hua L C, Ungar P S, Zhou Z R, Ning Z W, Zheng J, Qian L M, Rose J C, Yang D. Dental development and microstructure of bamboo rat incisors. Biosurf Biotribol 1(4): 263269 (2015)
[27]
Lin X, Bai Y J, Zhou H, Yang L. Mechano-active biomaterials for tissue repair and regeneration. J Mater Sci Technol 59: 227233 (2020)
[28]
Xiao L X, Tong Z X, Chen Y C, Pochan D J, Sabanayagam C R, Jia X Q. Hyaluronic acid-based hydrogels containing covalently integrated drug depots: Implication for controlling inflammation in mechanically stressed tissues. Biomacromolecules 14(11): 38083819 (2013)
[29]
Xu C L, Wei Z H, Gao H J, Bai Y J, Liu H L, Yang H L, Lai Y K, Yang L. Drug delivery: Bioinspired mechano-sensitive macroporous ceramic sponge for logical drug and cell delivery. Adv Sci 4(6): 1600410 (2017)
[30]
Holme M N, Fedotenko I A, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon P L, Ziegler A, et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat Nanotech 7(8): 536543 (2012)
[31]
Inoguchi H, Kwon I K, Inoue E, Takamizawa K, Maehara Y, Matsuda T. Mechanical responses of a compliant electrospun poly(l-lactide-co-ε-caprolactone) small-diameter vascular graft. Biomaterials 27(8): 14701478 (2006)
[32]
Lin X A, Liu Y E, Bai A B, Cai H H, Bai Y J, Jiang W, Yang H L, Wang X H, Yang L, Sun N, et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat Biomed Eng 3(8): 632643 (2019)
[33]
Brusatin G, Panciera T, Gandin A, Citron A, Piccolo S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nature Mater 17(12): 10631075 (2018)
[34]
Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif S A, Weaver J C, Huebsch N, Lee H P, Lippens E, Duda G N, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Mater 15(3): 326334 (2016)
[35]
Kouwer P H J, Koepf M, Le Sage V A A, Jaspers M, van Buul A M, Eksteen-Akeroyd Z H, Woltinge T, Schwartz E, Kitto H J, Hoogenboom R, et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493(7434): 651655 (2013)
[36]
Mertz D, Vogt C, Hemmerlé J, Mutterer J, Ball V, Voegel J C, Schaaf P, Lavalle P. Mechanotransductive surfaces for reversible biocatalysis activation. Nature Mater 8(9): 731735 (2009)
[37]
Rios C, Longo J, Zahouani S, Garnier T, Vogt C, Reisch A, Senger B, Boulmedais F, Hemmerlé J, Benmlih K, et al. A new biomimetic route to engineer enzymatically active mechano-responsive materials. Chem Commun 51(26): 56225625 (2015)
[38]
Miao Z, Xu D S, Ouyang J H, Guo G L, Zhao X S, Tang Y Q. Electrochemically induced sol–gel preparation of single-crystalline TiO2 nanowires. Nano Lett 2(7): 717720 (2002)
[39]
Sander M, Côté M, Gu W, Kile B, Tripp C. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater 16(22): 20522057 (2004)
[40]
Shchukin D, Zheludkevich M, Yasakau K, Lamaka S, Ferreira M, Möhwald H. Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv Mater 18(13): 16721678 (2006)
[41]
Dong W J, Zhang T R, Epstein J, Cooney L, Wang H, Li Y B, Jiang Y B, Cogbill A, Varadan V, Tian Z R. Multifunctional nanowire bioscaffolds on titanium. Chem Mater 19(18): 44544459 (2007)
[42]
Mao Y B, Wong S S. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. J Am Chem Soc 128(25): 82178226 (2006)
[43]
Yoshida R, Suzuki Y, Yoshikawa S. Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J Solid State Chem 178(7): 21792185 (2005)
[44]
Liu D S, Jin F, Huang A J, Sun X L, Su H, Yang Y, Zhang Y F, Rui X H, Geng H B, Li C C. Phosphorus-doping-induced surface vacancies of 3D Na2Ti3O7 nanowire arrays enabling high-rate and long-life sodium storage. Chem Eur J 25(65): 1488114889 (2019)
[45]
Wang Z L, Wang A C. On the origin of contact-electrification. Mater Today 30: 3451 (2019)
[46]
Lang H J, Zou K, Chen R L, Huang Y, Peng Y T. Role of interfacial water in the tribological behavior of graphene in an electric field. Nano Lett 22(15): 60556061 (2022)
[47]
Shi B, Gan X H, Yu K, Lang H J, Cao X A, Zou K, Peng Y T. Electronic friction and tuning on atomically thin MoS2. NPJ 2D Mater Appl 6: 39 (2022)
[48]
Zhang R Y, Hummelgård M, Örtegren J, Olsen M, Andersson H, Yang Y, Zheng H W, Olin H. The triboelectricity of the human body. Nano Energy 86: 106041 (2021)
[49]
Chen S, Fan X X, Zhang C F, Wei A L, Chen W Y. Synthesis of hierarchical and flower-like TiO2 nanowire microspheres as biocompatible cell carriers. Mater Sci Eng C 126: 112118 (2021)
[50]
Chen S, Shen L L, Huang D, Du J, Fan X X, Wei A L, Jia L, Chen W Y. Facile synthesis, microstructure, formation mechanism, in vitro biocompatibility, and drug delivery property of novel dendritic TiO2 nanofibers with ultrahigh surface area. Mater Sci Eng C 115: 111100 (2020)
[51]
Zhang B J, Li J, He L, Huang H, Weng J. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomater 114: 431448 (2020)
[52]
Augustine A, Augustine R, Hasan A, Raghuveeran V, Rouxel D, Kalarikkal N, Thomas S. Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications. J Mater Sci 30: 96 (2019)
[53]
Wu S L, Liu X M, Hu T, Chu P K, Ho J P Y, Chan Y L, Yeung K W K, Chu C L, Hung T F, Huo K F, et al. A biomimetic hierarchical scaffold: Natural growth of nanotitanates on three-dimensional microporous Ti-based metals. Nano Lett 8(11): 38033808 (2008)
[54]
Shao Y E, Fu J P. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: A materials perspective. Adv Mater 26(10): 14941533 (2014)
[55]
Cai P Q, Hu B H, Leow W R, Wang X Y, Loh X J, Wu Y L, Chen X D. Biomechano-interactive materials and interfaces. Adv Mater 30(31): 1800572 (2018)
[56]
Fu J P, Wang Y K, Yang M T, Desai R A, Yu X A, Liu Z J, Chen C S. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9): 733736 (2010)
[57]
Guvendiren M, Burdick J A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3: 792 (2012)
[58]
Kloxin A M, Tibbitt M W, Anseth K S. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat Protoc 5(12): 18671887 (2010)
[59]
Trappmann B, Gautrot J E, Connelly J T, Strange D G T, Li Y A, Oyen M L, Cohen Stuart M A, Boehm H, Li B J, Vogel V, et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater 11(7): 642649 (2012)
[60]
Shen D Z, Xiao M, Xiao Y, Zou G S, Hu L F, Zhao B, Liu L, Duley W W, Zhou Y N. Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation. ACS Appl Mater Interfaces 11(15): 1424914255 (2019)
[61]
Huang Z L, Zeng Q, Hui Y, Alahi M E E, Qin S J, Wu T Z. Fast polymerization of polydopamine based on titanium dioxide for high-performance flexible electrodes. ACS Appl Mater Interfaces 12(12): 1449514506 (2020)
[62]
Khanna S, Marathey P, Paneliya S, Chaudhari R, Vora J. Fabrication of rutile - TiO2 nanowire on shape memory alloy: A potential material for energy storage application. Mater Today Proc 50: 1116 (2022)
[63]
Devi C, Swaroop R, Arya A, Tanwar S, Sharma A L, Kumar S. Fabrication of energy storage EDLC device based on self-synthesized TiO2 nanowire dispersed polymer nanocomposite films. Polym Bull 79(7): 47014719 (2022)
Friction
Pages 968-980
Cite this article:
HUA L, HU C, ZHANG J, et al. Nano-frictional mechano-reinforcing porous nanowires scaffolds. Friction, 2024, 12(5): 968-980. https://doi.org/10.1007/s40544-023-0815-x

384

Views

7

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 November 2022
Revised: 17 February 2023
Accepted: 09 August 2023
Published: 04 December 2023
© The author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return