AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in ocular lubrication

Jianhua ZHANGYunjuan SUJian WUHongdong WANG( )
School of Mechatronic Engineering and Automation and Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200444, China
Show Author Information

Graphical Abstract

Abstract

The ocular lubrication, where the eyelid constantly slides on the curved corneal surface, is considered as one of primary lubrication systems in bio-tribology. Under reliable lubrication conditions, sensitive ocular tissues remain intact from fatigue damage during spontaneous blink cycles. The tear film, evenly filled between cornea and conjunctiva, is a biological fluid with dynamic adjustment ability, which provides superior lubrication with the friction coefficient of below 0.01. However, the lubrication failure may result in a variety of uncomfortable symptoms such as inflammatory reactions, tissue damage and neurological abnormalities. Therefore, it is essential to clarify the fundamental mechanism of ocular lubrication, which helps to alleviate and even recover from various ocular symptoms. This review firstly demonstrates that the ocular components, containing lipids and mucins, contribute to maintaining the lubrication stability of tear film. Furthermore, the ocular lubrication state in various physiological environments and the physical effect on tear film dynamics are further discussed. As typical applications, the therapeutic agents of dry eye syndrome and contact lens with superior lubrication effects are introduced and their lubrication mechanisms are clarified. Finally, this review summarizes a series of the latest research inspired by ocular lubrication. Overall, this work will provide a valuable guidance on the theoretical research and extensive applications in the field of biological lubrication.

References

[1]

Luo J B, Liu M, Ma L R. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021)

[2]

Zheng Y, Bashandeh K, Shakil A, Jha S, Polycarpou A A. Review of dental tribology: Current status and challenges. Tribol Int 166: 107354 (2022)

[3]

Seror J, Zhu L Y, Goldberg R, Day A J, Klein J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat Commun 6: 6497 (2015)

[4]

Holly F J, Holly T F. Advances in ocular tribology. Adv Exp Med Biol 350: 275–283 (1994)

[5]

Dowson D. Whither tribology? Wear 16(4): 303–304 (1970)

[6]

Dowson D. Bio-tribology. Faraday Discuss 156: 9–30 (2012)

[7]

Hsu S M. Boundary lubrication: Current understanding. Tribol Lett 3(1): 1–11 (1997)

[8]

Zakharov S M. Hydrodynamic lubrication research: Current situation and future prospects. J Frict Wear 31(1): 56–67 (2010)

[9]

Gellman A J, Spencer N D. Surface chemistry in tribology. Proc Inst Mech Eng Part J J Eng Tribol 216(6): 443–461 (2002)

[10]

Jin Z M, Dowson D. Bio-friction. Friction 1(2): 100–113 (2013)

[11]

Hart S M, McGhee E O, Urueña J M, Levings P P, Eikenberry S S, Schaller M A, Pitenis A A, Sawyer W G. Surface gel layers reduce shear stress and damage of corneal epithelial cells. Tribol Lett 68(4): 106 (2020)

[12]

Seo J, Byun W Y, Alisafaei F, Georgescu A, Yi Y S, Massaro-Giordano M, Shenoy V B, Lee V, Bunya V Y, Huh D. Multiscale reverse engineering of the human ocular surface. Nat Med 25(8): 1310–1318 (2019)

[13]

Bertsch P, Bergfreund J, Windhab E J, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 130: 32–53 (2021)

[14]

Stapleton F, Alves M, Bunya V Y, Jalbert I, Lekhanont K, Malet F, Na K S, Schaumberg D, Uchino M, Vehof J, et al. TFOS DEWS Ⅱ epidemiology report. Ocul Surf 15(3): 334–365 (2017)

[15]

Craig J P, Nichols K K, Akpek E K, Caffery B, Dua H S, Joo C K, Liu Z G, Nelson J D, Nichols J J, Tsubota K, et al. TFOS DEWS Ⅱ definition and classification report. Ocul Surf 15(3): 276–283 (2017)

[16]

Bron A J, de Paiva C S, Chauhan S K, Bonini S, Gabison E E, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, et al. TFOS DEWS Ⅱ pathophysiology report. Ocul Surf 15(3): 438–510 (2017)

[17]

Ang B C H, Sng J J, Wang P X H, Htoon H M, Tong L H T. Sodium hyaluronate in the treatment of dry eye syndrome: A systematic review and meta-analysis. Sci Rep 7(1): 9013 (2017)

[18]

Labetoulle M, Benitez-Del-Castillo J M, Barabino S, Herrero Vanrell R, Daull P, Garrigue J S, Rolando M. Artificial tears: Biological role of their ingredients in the management of dry eye disease. Int J Mol Sci 23(5): 2434 (2022)

[19]

Rodriguez Benavente M C, Argüeso P. Glycosylation pathways at the ocular surface. Biochem Soc Trans 46(2): 343–350 (2018)

[20]

Madl A C, Fuller G F, Myung D. Modeling and restoring the tear film. Curr Ophthalmol Rep 8(4): 281–300 (2020)

[21]

Sridhar M S. Anatomy of cornea and ocular surface. Indian J Ophthalmol 66(2): 190–194 (2018)

[22]

Ramos T, Scott D, Ahmad S. An update on ocular surface epithelial stem cells: Cornea and conjunctiva. Stem Cells Int 2015: 601731 (2015)

[23]

Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clin Chim Acta 369(1): 17–28 (2006)

[24]

Pitenis A A, Urueña J M, Hormel T T, Bhattacharjee T, Niemi S R, Marshall S L, Hart S M, Schulze K D, Angelini T E, Sawyer W G. Corneal cell friction: Survival, lubricity, tear films, and mucin production over extended duration in vitro studies. Biotribology 11: 77–83 (2017)

[25]

Masmali A M, Purslow C, Murphy P J. The tear ferning test: A simple clinical technique to evaluate the ocular tear film. Clin Exp Optom 97(5): 399–406 (2014)

[26]

Yamada M, Mochizuki H, Kawai M, Yoshino M, Mashima Y. Fluorophotometric measurement of pH of human tears in vivo. Curr Eye Res 16(5): 482–486 (1997)

[27]

Pitenis A A, Urueña J M, McGhee E O, Hart S M, Reale E R, Kim J, Schulze K D, Marshall S L, Bennett A I, Niemi S R, et al. Challenges and opportunities in soft tribology. Tribol Mater Surf Interfaces 11(4): 180–186 (2017)

[28]

Pedro D I, Nguyen D T, Rosa J G, Diodati N, Kim J, Bowman J I, Olson R A, Urueña J M, Sumerlin B S, Sawyer W G. Gel-forming mucin improves lubricity across model gemini epithelial cell interfaces. Tribol Lett 69(4): 155 (2021)

[29]

Svitova T F, Lin M C. Dynamic interfacial properties of human tear-lipid films and their interactions with model-tear proteins in vitro. Adv Colloid Interface Sci 233: 4–24 (2016)

[30]

Hattrup C L, Gendler S J. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70: 431–457 (2008)

[31]

Gouveia S M, Tiffany J M. Human tear viscosity: An interactive role for proteins and lipids. Biochim Biophys Acta 1753(2): 155–163 (2005)

[32]

Downie L E, Bandlitz S, Bergmanson J P G, Craig J P, Dutta D, Maldonado-Codina C, Ngo W, Siddireddy J S, Wolffsohn J S. CLEAR—Anatomy and physiology of the anterior eye. Cont Lens Anterior Eye 44(2): 132–156 (2021)

[33]

Uchino Y. The ocular surface glycocalyx and its alteration in dry eye disease: A review. Invest Ophthalmol Vis Sci 59(14): DES157–DES162 (2018)

[34]

Hori Y. Secreted mucins on the ocular surface. Invest Ophthalmol Vis Sci 59(14): DES151–DES156 (2018)

[35]

Schmidt T A, Sullivan D A, Knop E, Richards S M, Knop N, Liu S H, Sahin A, Darabad R R, Morrison S, Kam W R, et al. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface. JAMA Ophthalmol 131(6): 766 (2013)

[36]

Samsom M, Chan A, Iwabuchi Y, Subbaraman L, Jones L, Schmidt T A. In vitro friction testing of contact lenses and human ocular tissues: Effect of proteoglycan 4 (PRG4). Tribol Int 89: 27–33 (2015)

[37]

Bai Y Q, Ngo W, Khanal S, Nichols J J. Characterization of the thickness of the tear film lipid layer in meibomian gland dysfunction using high resolution optical microscopy. Ocul Surf 24: 34–39 (2022)

[38]

King-Smith P E, Bailey M D, Braun R J. Four characteristics and a model of an effective tear film lipid layer (TFLL). Ocul Surf 11(4): 236–245 (2013)

[39]

Georgiev G A, Eftimov P, Yokoi N. Contribution of mucins towards the physical properties of the tear film: A modern update. Int J Mol Sci 20(24): 6132 (2019)

[40]

Tiffany J M. Tears in health and disease. Eye 17(8): 923–926 (2003)

[41]

Cope C, Dilly P N, Kaura R, Tiffany J M. Wettability of the corneal surface: A reappraisal. Curr Eye Res 5(10): 777–785 (1986)

[42]

Nagyová B, Tiffany J M. Components responsible for the surface tension of human tears. Curr Eye Res 19(1): 4–11 (1999)

[43]

Davidson H J, Kuonen V J. The tear film and ocular mucins. Vet Ophthalmol 7(2): 71–77 (2004)

[44]

Herbaut A, Liang H, Denoyer A, Baudouin C, Labbé A. Tear film analysis and evaluation of optical quality: A review of the literature. J Fr Ophtalmol 42(2): e21–e35 (2019)

[45]

Braun R J, Gewecke N R, Begley C G, King-Smith P E, Siddique J I. A model for tear film thinning with osmolarity and fluorescein. Invest Ophthalmol Vis Sci 55(2): 1133 (2014)

[46]

Lu X B, Khonsari M M, Gelinck E R M. The stribeck curve: Experimental results and theoretical prediction. J Tribol 128(4): 789–794 (2006)

[47]

Coles J M, Chang D P, Zauscher S. Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. Curr Opin Colloid Interface Sci 15(6): 406–416 (2010)

[48]

Pult H, Tosatti S G P, Spencer N D, Asfour J M, Ebenhoch M, Murphy P J. Spontaneous blinking from a tribological viewpoint. Ocul Surf 13(3): 236–249 (2015)

[49]

Cher I. A new look at lubrication of the ocular surface: Fluid mechanics behind the blinking eyelids. Ocul Surf 6(2): 79–86 (2008)

[50]

Dunn A C, Tichy J A, Urueña J M, Sawyer W G. Lubrication regimes in contact lens wear during a blink. Tribol Int 63: 45–50 (2013)

[51]

Rabiah N I, Sato Y, Kannan A, Kress W, Straube F, Fuller G G. Understanding the adsorption and potential tear film stability properties of recombinant human lubricin and bovine submaxillary mucins in an in vitro tear film model. Colloids Surf B Biointerfaces 195: 111257 (2020)

[52]

Samsom M, Iwabuchi Y, Sheardown H, Schmidt T A. Proteoglycan 4 and hyaluronan as boundary lubricants for model contact lens hydrogels. J Biomed Mater Res B Appl Biomater 106(3): 1329–1338 (2018)

[53]

Gaffney E A, Tiffany J M, Yokoi N, Bron A J. A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye. Prog Retin Eye Res 29(1): 59–78 (2010)

[54]

Yokoi N, Bron A J, Georgiev G A. The precorneal tear film as a fluid shell: The effect of blinking and saccades on tear film distribution and dynamics. Ocul Surf 12(4): 252–266 (2014)

[55]

Bai Y Q, Nichols J J. Advances in thickness measurements and dynamic visualization of the tear film using non-invasive optical approaches. Prog Retin Eye Res 58: 28–44 (2017)

[56]

Braun R J. Dynamics of the tear film. Annu Rev Fluid Mech 44: 267–297 (2012)

[57]

Zhong L, Braun R J, Begley C G, King-Smith P E. Dynamics of fluorescent imaging for rapid tear thinning. Bull Math Biol 81(1): 39–80 (2019)

[58]

Cher I. Fluids of the ocular surface: Concepts, functions and physics. Clin Exp Ophthalmol 40(6): 634–643 (2012)

[59]

Yokoi N, Georgiev G A. Tear-film-oriented diagnosis for dry eye. Jpn J Ophthalmol 63(2): 127–136 (2019)

[60]
Sharma A, Tiwari S, Khanna R, Tiffany J M. (1998) Hydrodynamics of meniscus-induced thinning of the tear film. Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2. Boston, MA: Springer US: 425–431
[61]

Miller K L, Polse K A, Radke C J. Black-line formation and the “perched” human tear film. Curr Eye Res 25(3): 155–162 (2002)

[62]

Allouche M, Abderrahmane H A, Djouadi S M, Mansouri K. Influence of curvature on tear film dynamics. Eur J Mech B 66: 81–91 (2017)

[63]

Scriven L E, Sternling C V. The Marangoni effects. Nature 187: 186–188 (1960)

[64]

Lin S P, Brenner H. Marangoni convection in a tear film. J Colloid Interface Sci 85(1): 59–65 (1982)

[65]

Aydemir E, Breward C J W, Witelski T P. The effect of polar lipids on tear film dynamics. Bull Math Biol 73(6): 1171–1201 (2011)

[66]

Zhong L, Ketelaar C F, Braun R J, Begley C G, King-Smith P E. Mathematical modelling of glob-driven tear film breakup. Math Med Biol A J IMA 36(1): 55–91 (2019)

[67]

Sharma A, Ruckenstein E. Mechanism of tear film rupture and formation of dry spots on cornea. J Colloid Interface Sci 106(1): 12–27 (1985)

[68]

Sharma A, Khanna R, Reiter G. A thin film analog of the corneal mucus layer of the tear film: An enigmatic long range non-classical DLVO interaction in the breakup of thin polymer films. Colloids Surf B Biointerfaces 14(1–4): 223–235 (1999)

[69]

Dey M, Vivek A S, Dixit H N, Richhariya A, Feng J J. A model of tear-film breakup with continuous mucin concentration and viscosity profiles. J Fluid Mech 858: 352–376 (2019)

[70]

Choudhury A, Dey M, Dixit H N, Feng J J. Tear-film breakup: The role of membrane-associated mucin polymers. Phys Rev E 103: 013108 (2021)

[71]

Tiffany J M. The viscosity of human tears. Int Ophthalmol 15(6): 371–376 (1991)

[72]

Zhang Y L, Matar O K, Craster R V. Rupture analysis of the corneal mucus layer of the tear film. Mol Simul 30(2–3): 167–172 (2004)

[73]

Mehdaoui H, Abderrahmane H A, Bouda F N, Koulali A, Hamani S. 2D numerical simulation of tear film dynamics: Effects of shear-thinning properties. Eur J Mech B 90: 128–136 (2021)

[74]

Braun R J, King-Smith P E, Begley C G, Li L F, Gewecke N R. Dynamics and function of the tear film in relation to the blink cycle. Prog Retin Eye Res 45: 132–164 (2015)

[75]

Bruna M, Breward C. The influence of non-polar lipids on tear film dynamics. J Fluid Mech 746: 565–605 (2014)

[76]

Siddique J I, Braun R J. Tear film dynamics with evaporation, osmolarity and surfactant transport. Applied Mathematical Modelling 39(1): 255-269 (2015)

[77]

Peng C C, Cerretani C, Braun R J, Radke C J. Evaporation-driven instability of the precorneal tear film. Adv Colloid Interface Sci 206: 250–264 (2014)

[78]

Braun R J, Driscoll T A, Begley C G, King-Smith P E, Siddique J I. On tear film breakup (TBU): Dynamics and imaging. Math Med Biol A J IMA 35(2): 145–180 (2018)

[79]
Braun R J, Driscoll T A, Begley C G. Mathematical models of the tear film. Ocular Fluid Dynamics. Cham: Birkhäuser, 2019: 387–432.
[80]

Stapf M R, Braun R J, King-Smith P E. Duplex tear film evaporation analysis. Bull Math Biol 79(12): 2814–2846 (2017)

[81]

Crouzier T, Boettcher K, Geonnotti A R, Kavanaugh N L, Hirsch J B, Ribbeck K, Lieleg O. Modulating mucin hydration and lubrication by deglycosylation and polyethylene glycol binding. Adv Materials Inter 2(18): 1500308 (2015)

[82]

Samsom M L, Morrison S, Masala N, Sullivan B D, Sullivan D A, Sheardown H, Schmidt T A. Characterization of full-length recombinant human Proteoglycan 4 as an ocular surface boundary lubricant. Exp Eye Res 127: 14–19 (2014)

[83]

Bielory L, Wagle P. Ocular surface lubricants. Curr Opin Allergy Clin Immunol 17(5): 382–389 (2017)

[84]

Aragona P, Simmons P A, Wang H P, Wang T. Physicochemical properties of hyaluronic acid-based lubricant eye drops. Translational Vision Science & Technology 8(6): 2 (2019)

[85]

Rangarajan R, Kraybill B, Ogundele A, Ketelson H A. Effects of a hyaluronic acid/hydroxypropyl guar artificial tear solution on protection, recovery, and lubricity in models of corneal epithelium. J Ocul Pharmacol Ther 31(8): 491–497 (2015)

[86]

Černohlávek M, Brandejsová M, Štěpán P, Vagnerová H, Hermannová M, Kopecká K, Kulhánek J, Nečas D, Vrbka M, Velebný V, et al. Insight into the lubrication and adhesion properties of hyaluronan for ocular drug delivery. Biomolecules 11(10): 1431 (2021)

[87]

Lee D, Lu Q Z, Sommerfeld S D, Chan A, Menon N G, Schmidt T A, Elisseeff J H, Singh A. Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease. Acta Biomater 55: 163–171 (2017)

[88]

Dunn A C, Urueña J M, Huo Y C, Perry S S, Angelini T E, Sawyer W G. Lubricity of surface hydrogel layers. Tribol Lett 49(2): 371–378 (2013)

[89]

Hart S M, McGhee E O, Urueña J M, Levings P P, Eikenberry S S, Schaller M A, Pitenis A A, Sawyer W G. Surface gel layers reduce shear stress and damage of corneal epithelial cells. Tribol Lett 68(4): 106 (2020)

[90]

Acar D, Molina-Martínez I T, Gómez-Ballesteros M, Guzmán-Navarro M, Benítez-Del-Castillo J M, Herrero-Vanrell R. Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Cont Lens Anterior Eye 41(1): 93–96 (2018)

[91]

Kim Y C, Shin M D, Hackett S F, Hsueh H T, Silva R L E, Date A, Han H, Kim B J, Xiao A, Kim Y, et al. Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nat Biomed Eng 4(11): 1053–1062 (2020)

[92]

Rennie A C, Dickrell P L, Sawyer W G. Friction coefficient of soft contact lenses: Measurements and modeling. Tribol Lett 18(4): 499–504 (2005)

[93]

Carvalho A L, Vilhena L M, Ramalho A. Study of the frictional behavior of soft contact lenses by an innovative method. Tribol Int 153: 106633 (2021)

[94]

Roba M, Duncan E G, Hill G A, Spencer N D, Tosatti S G P. Friction measurements on contact lenses in their operating environment. Tribol Lett 44(3): 387 (2011)

[95]

Sterner O, Aeschlimann R, Zürcher S, Scales C, Riederer D, Spencer N D, Tosatti S G P. Tribological classification of contact lenses: From coefficient of friction to sliding work. Tribol Lett 63(1): 9 (2016)

[96]

Eftimov P B, Yokoi N, Peev N, Paunski Y, Georgiev G A. Relationships between the material properties of silicone hydrogels: Desiccation, wettability and lubricity. J Biomater Appl 35(8): 933–946 (2021)

[97]

Hofmann G, Jubin P, Gerligand P, Gallois-Bernos A, Franklin S, Smulders N, Gerhardt L C, Valster S. In-vitro method for determining corneal tissue friction and damage due to contact lens sliding. Biotribology 5: 23–30 (2016)

[98]

Zhu D K, Liu Y P, Gilbert J L. Micromechanical measurement of adhesion of dehydrating silicone hydrogel contact lenses to corneal tissue. Acta Biomater 127: 242–251 (2021)

[99]

Samsom M, Chan A, Iwabuchi Y, Subbaraman L, Jones L, Schmidt T A. In vitro friction testing of contact lenses and human ocular tissues: Effect of proteoglycan 4 (PRG4). Tribol Int 89: 27–33 (2015)

[100]

Samsom M, Iwabuchi Y, Sheardown H, Schmidt T A. Proteoglycan 4 and hyaluronan as boundary lubricants for model contact lens hydrogels. J Biomed Mater Res B Appl Biomater 106(3): 1329–1338 (2018)

[101]

Rickert C A, Wittmann B, Fromme R, Lieleg O. Highly transparent covalent mucin coatings improve the wettability and tribology of hydrophobic contact lenses. ACS Appl Mater Interfaces 12(25): 28024–28033 (2020)

[102]

Winkeljann B, Boettcher K, Balzer B N, Lieleg O. Mucin coatings prevent tissue damage at the cornea–contact lens interface. Adv Materials Inter 4(19): 1700186 (2017)

[103]

Korogiannaki M, Samsom M, Matheson A, Soliman K, Schmidt T A, Sheardown H. Investigating the synergistic interactions of surface immobilized and free natural ocular lubricants for contact lens applications: A comparative study between hyaluronic acid and proteoglycan 4 (lubricin). Langmuir 37(3): 1062–1072 (2021)

[104]

White C J, McBride M K, Pate K M, Tieppo A, Byrne M E. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses. Biomaterials 32(24): 5698–5705 (2011)

[105]

Dunn A C, Sawyer W G, Angelini T E. Gemini interfaces in aqueous lubrication with hydrogels. Tribol Lett 54(1): 59–66 (2014)

[106]

Bonyadi S Z, Hasan M M, Kim J, Mahmood S, Schulze K D, Dunn A C. Review: Friction and lubrication with high water content crosslinked hydrogels. Tribol Lett 68(4): 119 (2020)

[107]

Liu W R, Simič R, Liu Y H, Spencer N D. Effect of contact geometry on the friction of acrylamide hydrogels with different surface structures. Friction 10(3): 360–373 (2022)

[108]

Shoaib T, Espinosa-Marzal R M. Advances in understanding hydrogel lubrication. Colloids Interfaces 4(4): 54 (2020)

[109]

Qu M H, Liu H, Yan C Y, Ma S H, Cai M R, Ma Z F, Zhou F. Layered hydrogel with controllable surface dissociation for durable lubrication. Chem Mater 32(18): 7805–7813 (2020)

[110]

Chau A L, Urueña J M, Pitenis A A. Load-independent hydrogel friction. Biotribology 26: 100183 (2021)

[111]

Urueña J M, McGhee E O, Angelini T E, Dowson D, Sawyer W G, Pitenis A A. Normal load scaling of friction in gemini hydrogels. Biotribology 13: 30–35 (2018)

[112]

Schulze K D, Hart S M, Marshall S L, O’Bryan C S, Urueña J M, Pitenis A A, Sawyer W G, Angelini T E. Polymer osmotic pressure in hydrogel contact mechanics. Biotribology 11: 3–7 (2017)

[113]

Rudge R E D, Scholten E, Dijksman J A. Natural and induced surface roughness determine frictional regimes in hydrogel pairs. Tribol Int 141: 105903 (2020)

[114]

McGhee E O, Pitenis A A, Urueña J M, Schulze K D, McGhee A J, O’Bryan C S, Bhattacharjee T, Angelini T E, Sawyer W G. In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology 13: 23–29 (2018)

[115]

Pitenis A A, Urueña J M, Schulze K D, Nixon R M, Dunn A C, Krick B A, Sawyer W G, Angelini T E. Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter 10(44): 8955–8962 (2014)

[116]

McGhee E O, Urueña J M, Pitenis A A, Sawyer W G. Temperature-dependent friction of gemini hydrogels. Tribol Lett 67(4): 117 (2019)

[117]

Urueña J M, Pitenis A A, Nixon R M, Schulze K D, Angelini T E, Gregory Sawyer W. Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology 1–2: 24–29 (2015)

[118]

Pitenis A A, Manuel Urueña J, Cooper A C, Angelini T E, Gregory Sawyer W. Superlubricity in gemini hydrogels. J Tribol 138(4): 042103 (2016)

[119]

Dunn A C, Pitenis A A, Urueña J M, Schulze K D, Angelini T E, Sawyer W G. Kinetics of aqueous lubrication in the hydrophilic hydrogel Gemini interface. Proc Inst Mech Eng H 229(12): 889–894 (2015)

[120]

Cross L M, Shah K, Palani S, Peak C W, Gaharwar A K. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomedicine 14(7): 2465–2474 (2018)

[121]

Lin P, Zhang R, Wang X L, Cai M R, Yang J, Yu B, Zhou F. Articular cartilage inspired bilayer tough hydrogel prepared by interfacial modulated polymerization showing excellent combination of high load-bearing and low friction performance. ACS Macro Lett 5(11): 1191–1195 (2016)

[122]

Ma S H, Scaraggi M, Wang D A, Wang X L, Liang Y M, Liu W M, Dini D, Zhou F. Nanoporous substrate-infiltrated hydrogels: A bioinspired regenerable surface for high load bearing and tunable friction. Adv Funct Materials 25(47): 7366–7374 (2015)

[123]

Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom 95(1): 3–11 (2012)

[124]

Bayer I. Advances in tribology of lubricin and lubricin-like synthetic polymer nanostructures. Lubricants 6(2): 30 (2018)

[125]

Navarro L A, French D L, Zauscher S. Advances in mucin mimic synthesis and applications in surface science. Curr Opin Colloid Interface Sci 38: 122–134 (2018)

[126]

Raviv U, Klein J. Fluidity of bound hydration layers. Science 297(5586): 1540–1543 (2002)

[127]

Han T Y, Zhang C H, Li J J, Yuan S H, Chen X C, Zhang J Y, Luo J B. Origins of superlubricity promoted by hydrated multivalent ions. J Phys Chem Lett 11(1): 184–190 (2020)

[128]

Han T Y, Zhang C H, Luo J B. Macroscale superlubricity enabled by hydrated alkali metal ions. Langmuir 34(38): 11281–11291 (2018)

[129]

Li S W, Bai P P, Li Y Z, Jia W P, Li X X, Meng Y G, Ma L R, Tian Y. Extreme-pressure superlubricity of polymer solution enhanced with hydrated salt ions. Langmuir 36(24): 6765–6774 (2020)

[130]

Gaisinskaya-Kipnis A, Ma L R, Kampf N, Klein J. Frictional dissipation pathways mediated by hydrated alkali metal ions. Langmuir 32(19): 4755–4764 (2016)

[131]

Safinya C R, Ewert K K. Liposomes derived from molecular vases. Nature 489: 372–374 (2012)

[132]

Banquy X, Burdyńska J, Lee D W, Matyjaszewski K, Israelachvili J. Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior. J Am Chem Soc 136(17): 6199–6202 (2014)

[133]

Ma L R, Gaisinskaya-Kipnis A, Kampf N, Klein J. Origins of hydration lubrication. Nat Commun 6: 6060 (2015)

[134]

Seror J, Zhu L Y, Goldberg R, Day A J, Klein J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat Commun 6: 6497 (2015)

[135]

Goldberg R, Schroeder A, Silbert G, Turjeman K, Barenholz Y, Klein J. Boundary lubricants with exceptionally low friction coefficients based on 2D close-packed phosphatidylcholine liposomes. Adv Mater 23(31): 3517–3521 (2011)

[136]

Sorkin R, Kampf N, Zhu L Y, Klein J. Hydration lubrication and shear-induced self-healing of lipid bilayer boundary lubricants in phosphatidylcholine dispersions. Soft Matter 12(10): 2773–2784 (2016)

[137]

Angayarkanni S A, Kampf N, Klein J. Surface interactions between boundary layers of poly(ethylene oxide)-liposome complexes: Lubrication, bridging, and selective ligation. Langmuir 35(48): 15469–15480 (2019)

[138]

Narumi A, Matsuda T, Kaga H, Satoh T, Kakuchi T. Synthesis of amphiphilic triblock copolymer of polystyrene and poly(4-vinylbenzyl glucoside) via TEMPO-mediated living radical polymerization. Polymer 43(17): 4835–4840 (2002)

[139]

Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters L J. Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370(6491): 634–636 (1994)

[140]

Ivanov I V, Meleshko T K, Kashina A V, Yakimansky A V. Amphiphilic multicomponent molecular brushes. Russ Chem Rev 88(12): 1248–1290 (2019)

[141]

Raviv U, Giasson S, Kampf N, Gohy J F, Jérôme R, Klein J. Lubrication by charged polymers. Nature 425(6954): 163–165 (2003)

[142]

Curnutt A, Smith K, Darrow E, Walters K B. Chemical and microstructural characterization of pH and[Ca2+] dependent sol-gel transitions in mucin biopolymer. Sci Rep 10(1): 8760 (2020)

[143]

Lai S K, Wang Y Y, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv Drug Deliv Rev 61(2): 86–100 (2009)

[144]

Xue K, Liow S S, Karim A A, Li Z B, Loh X J. A recent perspective on noncovalently formed polymeric hydrogels. Chem Rec 18(10): 1517–1529 (2018)

[145]

Wu Y, Pei X W, Wang X L, Liang Y M, Liu W M, Zhou F. Biomimicking lubrication superior to fish skin using responsive hydrogels. NPG Asia Mater 6(10): e136 (2014)

[146]

Chen Z, Feng Y, Zhao N, Shi J Q, Liu G Q, Liu W M. Near-infrared photothermal microgel for interfacial friction control. ACS Appl Polym Mater 3(8): 4055–4061 (2021)

[147]

Wang J, Zhang X W, Zhang S, Kang J Y, Guo Z C, Feng B Y, Zhao H, Luo Z, Yu J, Song W L, et al. Semi-convertible hydrogel enabled photoresponsive lubrication. Matter 4(2): 675–687 (2021)

[148]

Hua J, Björling M, Larsson R, Shi Y J. Friction control of chitosan-Ag hydrogel by silver ion. ES Mater Manuf 16: 30-36 (2021)

[149]

Zhang X W, Wang J, Jin H, Wang S T, Song W L. Bioinspired supramolecular lubricating hydrogel induced by shear force. J Am Chem Soc 140(9): 3186–3189 (2018)

[150]

Wu Y, Wei Q B, Cai M R, Zhou F. Interfacial friction control. J Advanced Materials Interfaces 2(2): 1400392 (2015)

[151]

Lei Y T, Wang X K, Liao J Y, Shen J L, Li Y L, Cai Z W, Hu N, Luo X J, Cui W G, Huang W. Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis. Bioact Mater 16: 472–484 (2022)

[152]

Wojtecki R J, Meador M A, Rowan S J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10(1): 14–27 (2011)

[153]

Wu M, Peng Q Y, Han L B, Zeng H B. Self-healing hydrogels and underlying reversible intermolecular interactions. Chin J Polym Sci 39(10): 1246–1261 (2021)

[154]

Wilson A, Gasparini G, Matile S. Functional systems with orthogonal dynamic covalent bonds. Chem Soc Rev 43(6): 1948–1962 (2014)

[155]

Yu K H, Xin A, Wang Q M. Mechanics of self-healing polymer networks crosslinked by dynamic bonds. J Mech Phys Solids 121: 409–431 (2018)

[156]

Zhang Q, Deng Y X, Luo H X, Shi C Y, Geise G M, Feringa B L, Tian H, Qu D H. Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions. J Am Chem Soc 141(32): 12804–12814 (2019)

Friction
Pages 1929-1954
Cite this article:
ZHANG J, SU Y, WU J, et al. Recent advances in ocular lubrication. Friction, 2024, 12(9): 1929-1954. https://doi.org/10.1007/s40544-023-0828-5

127

Views

7

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 10 October 2022
Revised: 24 March 2023
Accepted: 20 September 2023
Published: 08 February 2024
© The author(s) 2023.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return