AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Nano friction behaviour between magnetic materials and copper considering the inter-diffusion effect

Zilin LI1,2,3Lisha DOU1Shiyu YANG1Huajiang OUYANG4Qichen ZHU1Xiaoyang CHEN1Xin JIA1Shuaiwei DOU1Xiaolong CUI1Yudong ZHANG1,2,3Jingjiang QIU1,2,3Guochen QI1,2,3,5Bangbang NIE1,2,3Pan LIU1,2,3,5Ronghan WEI1,2,3,5( )
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Application, Zhengzhou University, Zhengzhou 450001, China
Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China
School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
School of Cyber Science and Engineering & Hanwei Institute of Internet of Things, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

Abstract

Copper, permalloy, cobalt, and silicon are the materials that have been widely utilised in magnetic devices. When the size of interest is down to the nanoscale, the inter-diffusion between certain materials becomes influential. This paper studies the nanoscale friction characteristics between frictional pairs with and without inter-diffusion properties through the atomic force microscope. The distinct evolution features of nanoscale friction force when inter-diffusion is involved are discovered experimentally, which is also confirmed through theoretical analysis. Firstly, through the thin film deposition method, four pairs of contact materials (Cu–Ni81Fe19, Si–Ni81Fe19, Cu–Co, Cu–Si) are designed for friction tests, in which diffusion occurs at the interface of Cu–Ni81Fe19 pair. Then, the effects of sliding velocity and loading force on the nano friction of each pair are measured. It is found that regardless of the diffusion phenomenon: (1) the adhesion force values exhibit a notable correlation to the values of the friction force; (2) the friction force in all four material pairs consistently increases with the growth of the normal loading force, although the growth rate may differ. In terms of the sliding velocity effect, the friction forces of immiscible materials (Si–Ni81Fe19, Cu–Co, and Cu–Si) are found to increase with the increasing sliding velocity. However, the friction force of Cu–Ni81Fe19, decreases with the increasing sliding velocity. Furthermore, a compositive friction model considering both the velocity and the normal force effect was proposed, which shows good agreement with the experimental results and explains the nano friction behaviour of both miscible and immiscible metals.

References

[1]
Akay A. Acoustics of friction. J Acoust Soc Am 111(4): 15251548 (2002)
[2]
Bowden F P, Leben L. Nature of sliding and the analysis of friction. Nature 141(3572): 691692 (1938)
[3]
Olsson H, Åström K J, Canudas de Wit C, Gäfvert M, Lischinsky P. Friction models and friction compensation. Eur J Contr 4(3): 176195 (1998)
[4]
Lee J J, Lee J G, Kwon S, Kim J J. Effect of different reinforcement materials on the formation of secondary plateaus and friction properties in friction materials for automobiles. Tribol Int 120: 7079 (2018)
[5]
Huang Y H, Li Q Y, Zhang J, Qi Y Z, Wang H T, Zhao P, Meng Y G. Effect of airborne contaminants on the macroscopic anti-wear performance of chemical vapor deposition graphene. Surf Coat Technol 383: 125276 (2020)
[6]
Dorn M, Habrová K, Koubek R, Serrano E. Determination of coefficients of friction for laminated veneer lumber on steel under high pressure loads. Friction 9(2): 367379 (2021)
[7]
Singh A Y, Dwivedi S, Mishra V. Influence of sliding speed on the tribological characteristics of pongamia oil with TiO2 nanoparticles. Int J Eng Technol 7: 155157 (2018)
[8]
Rabinowicz E. The determination of the compatibility of metals through static friction tests. S L E Trans 14(3): 198205 (1971)
[9]
Rabinowicz E, Chan P. Wear of silver-graphite brushes against various ring materials at high-current densities. IEEE Trans Compon Hybrids Manuf Technol 3(2): 288291 (1980)
[10]
Park J Y, Salmeron M. Fundamental aspects of energy dissipation in friction. Chem Rev 114(1): 677711 (2014).
[11]
Kajita S, Tohyama M, Washizu H, Ohmori T, Watanabe H, Shikata S. Friction modification by shifting of phonon energy dissipation in solid atoms. Tribol Online 10(2): 156161 (2015)
[12]
Park J Y, Ogletree D F, Thiel P A, Salmeron M. Electronic control of friction in silicon pn junctions. Science 313(5784): 186 (2006)
[13]
Wolter B, Yoshida Y, Kubetzka A, Hla S W, von Bergmann K, Wiesendanger R. Spin friction observed on the atomic scale. Phys Rev Lett 109(11): 116102 (2012)
[14]
Quignon B, Pilkington G A, Thormann E, Claesson P M, Ashfold M N R, Mattia D, Leese H, Davis S A, Briscoe W H. Sustained frictional instabilities on nanodomed surfaces: Stick–slip amplitude coefficient. ACS Nano 7(12): 1085010862 (2013)
[15]
Bhushan B, Israelachvili J N, Landman U. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature 374(6523): 607616 (1995)
[16]
Noël O, Mazeran P E, Stanković I. Nature of dynamic friction in a humid hydrophobic nanocontact. ACS Nano 16(7): 1076810774 (2022)
[17]
Vazirisereshk M R, Hasz K, Zhao M Q, Charlie Johnson A T, Carpick R W, Martini A. Nanoscale friction behavior of transition-metal dichalcogenides: Role of the chalcogenide. ACS Nano 14(11): 1601316021 (2020)
[18]
Li Y Z, Li S W, Bai P P, Jia W P, Xu Q, Meng Y G, Ma L R, Tian Y. Surface wettability effect on aqueous lubrication: Van der Waals and hydration force competition induced adhesive friction. J Colloid Interface Sci 599: 667675 (2021)
[19]
Kim H, Oh J, Park G, Jetybayeva A, Kim J, Lee Y-G, Hong S. Visualization of functional components in a lithium silicon titanium phosphate–natural graphite composite anode. ACS Appl Energy Mater 3: 32533261 (2020)
[20]
Weiss M, Majchrzycki Ł, Borkowska E, Cichomski M, Ptak A. Nanoscale dry friction: Dependence on load and sliding velocity. Tribol Int 162: 107133 (2021)
[21]
Ko H E, Kwan S G, Park H W, Caron A. Chemical effects on the sliding friction of Ag and Au(111). Friction 6(1): 8497 (2018)
[22]
Oh Y C, Kwon S K, Minkow A, Park H W, Kim S H, Fecht H J, Caron A. Effect of crystallographic orientation on the friction of copper and graphenized copper. J Mater Sci 55(34): 1643216450 (2020)
[23]
Acikgoz O, Baykara M Z. Speed dependence of friction on single-layer and bulk MoS2 measured by atomic force microscopy. Appl Phys Lett 116(7): 071603 (2020)
[24]
Kim H J, Kim D E. Nano-scale friction: A review. Int J Precis Eng Manuf 10(2): 141151 (2009)
[25]
Prandtl L. Ein gedankenmodell zur kinetischen theorie der festen Körper. Z Angew Math Mech 8(2): 85106 (1928)
[26]
Tomlinson G A. CVI.A molecular theory of friction. Lond Edinb Dublin Philos Mag J Sci 7(46): 905939 (1929)
[27]
Müller B, Berner J, Bechinger C, Krüger M. Properties of a nonlinear bath: Experiments, theory, and a stochastic prandtl–tomlinson model. New J Phys 22(2): 023014 (2020)
[28]
Vanossi A, Manini N, Urbakh M, Zapperi S, Tosatti E. Colloquium: Modeling friction: From nanoscale to mesoscale. Rev Mod Phys 85(2): 529552 (2013)
[29]
Popov V L, Gray J A T. Prandtl-tomlinson model: History and applications in friction, plasticity, and nanotechnologies. Z Angew Math Mech 92(9): 683708 (2012)
[30]
Bowden F P, Tabor D. The Friction and Lubrication of Solids. Oxford University Press, 2001.
[31]
Filippov A E, Klafter J, Urbakh M. Friction through dynamical formation and rupture of molecular bonds. Phys Rev Lett 92(13): 135503 (2004)
[32]
Ouyang W G, Ramakrishna S, Rossi A, Urbakh M, Spencer N, Arcifa A. Load and velocity dependence of friction mediated by dynamics of interfacial contacts. Phys Rev Lett 123(11): 116102 (2019)
[33]
Reboux S, Richardson G, Jensen O E. Bond tilting and sliding friction in a model of cell adhesion. Proc R Soc A 464(2090): 447467 (2008)
[34]
Driesen W, Rida A, Breguet J M, Clavel R. Friction based locomotion module for mobile MEMS robots. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 2007: 38153820.
[35]
Shen H L, Cai S X, Wang Z, Ge Z X, Yang W G. Magnetically driven microrobots: Recent progress and future development. Mater Des 227: 111735 (2023)
[36]
Peng L L, Zhang Y X, Wang J, Wang Q Y, Zheng G Z, Li Y Y, Chen Z P, Chen Y, Jiang L L, Wong C P. Slug-inspired magnetic soft millirobot fully integrated with triboelectric nanogenerator for on-board sensing and self-powered charging. Nano Energy 99: 107367 (2022)
[37]
Chatzipirpiridis G, Ergeneman O, Pokki J, Ullrich F, Fusco S, Ortega J A, Sivaraman K M, Nelson B J, Pané S. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv Healthc Mater 4(2): 209214 (2015)
[38]
Yasa I C, Ceylan H, Bozuyuk U, Wild A M, Sitti M. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci Robot 5(43): eaaz3867 (2020)
[39]
Zeb G, Duong T L, Balazinski M, Le X T. Direct electroless deposition of nickel onto silicon nitride ceramic: A novel approach for copper metallization of micro-/nano-fabricated devices. Adv Eng Mater 23(2): 2000598 (2021)
[40]
Kato A, Hasegawa Y, Taniguchi K, Shikida M. Monolithic integration of MEMS thermal flow sensor and its driving circuit onto flexible Cu on polyimide film. Microsyst Technol 26(9): 28392846 (2020)
[41]
Erdélyi Z, Girardeaux C, Tôkei Z, Beke D L, Cserháti C, Rolland A. Investigation of the interplay of nickel dissolution and copper segregation in Ni/Cu(111. Surf Sci 496(1–2): 129140 (2002)
[42]
Liu C L. Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system. Surf Sci 316(3): 294302 (1994)
[43]
Jankowski A. Interdiffusion at room temperature in Cu-Ni(Fe) nanolaminates. Coatings 8(6): 225 (2018)
[44]
Varmazyar J, Khodaei M. Diffusion bonding of aluminum-magnesium using cold rolled copper interlayer. J Alloys Compd 773: 838843 (2019)
[45]
Li Y J, Li C L, Lu Q, Du Q, Shi K Q, Hu Z Q, Zhou Z Y, Liu M, Pan J Y. Monotonically decreasing ferromagnetic resonance linewidth of Cu/Ni0.81Fe0.19 bilayer heterostructures with the increasing sputtering rate of the Cu layer. J Phys Chem C 125(43): 2402524031 (2021)
[46]
Holloway K, Fryer P M, Cabral C Jr, Harper J M E, Bailey P J, Kelleher K H. Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions. J Appl Phys 71(11): 54335444 (1992)
[47]
Oliveira B M C, Santos R F, Piedade A P, Ferreira P J, Vieira M F. Co-W barrier layers for metallization of copper interconnects: Thermal performance analysis. Nanomaterials 12(10): 1752 (2022)
[48]
Jiang J, Zeng D G, Ryu H, Chung K W, Bae S. Effects of controlling Cu spacer inter-diffusion by diffusion barriers on the magnetic and electrical stability of GMR spin-valve devices. J Magn Magn Mater 322(13): 18341840 (2010)
[49]
Zhou H J, Li J J, Xian Y H, Hu G M, Li X Y, Xia R. Nanoscale assembly of copper bearing-sleeve via cold-welding: A molecular dynamics study. Nanomaterials 8(10): 785 (2018)
[50]
Zubar T I, Fedosyuk V M, Trukhanov S V, Tishkevich D I, Michels D, Lyakhov D, Trukhanov A V. Method of surface energy investigation by lateral AFM: Application to control growth mechanism of nanostructured NiFe films. Sci Rep 10: 14411 (2020)
[51]
Hoffmann N, Gaul L. A sufficient criterion for the onset of sprag-slip oscillations. Arch Appl Mech 73(9): 650660 (2004)
[52]
Ko H E, Park H W, Jiang J Z, Caron A. Nanoscopic wear behavior of face centered cubic metals. Acta Mater 147: 203212 (2018)
[53]
Choi J H, Kwan S K, Ko H E, Park J H, Kim D K, Park H W, Caron A. Effect of normal contact vibration on nano-scale friction. Lubricants 7(11): 99 (2019)
[54]
Qian M, Tian Y, Wen S. Nanoscience and Technology: Nano-tribology. China Social Sciences Press, 2013. (In Chinese).
[55]
Maugis D. Adhesion of spheres: The JKR-DMT transition using a dugdale model. J Colloid Interface Sci 150(1): 243269 (1992)
[56]
Cao X, Pan G S, Huang P, Guo D, Xie G X. Silica-coated core–shell structured polystyrene nanospheres and their size-dependent mechanical properties. Langmuir 33(33): 82258232 (2017)
[57]
Xu R G, Xiang Y A, Rao Q, Leng Y S. On the asymptotic expressions of critical energy barrier in Prandtl-Tomlinson model. Int J Smart Nano Mater 10(2): 107115 (2019)
[58]
Iglesias M L, Gonçalves S. Sliding and dry friction: Prandtl-tomlinson athermal model revisited. Braz J Phys 48(6): 585591 (2018)
[59]
Callister W D, Rethwisch D. Materials Science and Engineering: An Introduction. Wiley New York, 2018.
[60]
Barel I, Urbakh M, Jansen L, Schirmeisen A. Multibond dynamics of nanoscale friction: The role of temperature. Phys Rev Lett 104(6): 066104 (2010)
[61]
Weiss M, Elmer F J. Dry friction in the Frenkel-Kontorova-Tomlinson model: Dynamical properties. Z Für Phys B Condens Matter 104(1): 5569 (1997)
[62]
Son S, Moon J, Kwon H, Asghari Rad P, Kato H, Kim H S. Novel co-Cu-based immiscible medium-entropy alloys with promising mechanical properties. Metals 11(2): 238 (2021)
[63]
Socoliuc A, Bennewitz R, Gnecco E, Meyer E. Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys Rev Lett 92(13): 134301 (2004)
[64]
Furlong O J, Manzi S J, Pereyra V D, Bustos V, Tysoe W T. Monte Carlo simulations for tomlinson sliding models for non-sinusoidal periodic potentials. Tribol Lett 39(2): 177180 (2010)
[65]
Bell G I. Models for the specific adhesion of cells to cells. Science 200(4342): 618627 (1978)
[66]
Zhurkov S N. Kinetic concept of the strength of solids. Int J Fract Mech 1(4): 311323 (1965)
[67]
He X, Liu Z, Ripley L B, Swensen V L, Griffin-Wiesner I J, Gulner B R, McAndrews G R, Wieser R J, Borovsky B P, Wang Q J. Empirical relationship between interfacial shear stress and contact pressure in micro-and macro-scale friction. Tribol Int 155: 106780 (2021)
Friction
Pages 1532-1547
Cite this article:
LI Z, DOU L, YANG S, et al. Nano friction behaviour between magnetic materials and copper considering the inter-diffusion effect. Friction, 2024, 12(7): 1532-1547. https://doi.org/10.1007/s40544-023-0831-x

261

Views

9

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 June 2023
Revised: 02 September 2023
Accepted: 20 September 2023
Published: 08 February 2024
© The author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return