Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Autonomous underwater vehicles (AUVs) have various applications in both military and civilian fields. A wider operation area and more complex tasks require better overall range performance of AUVs. However, until recently, there have been few unified criteria for evaluating the range performance of AUVs. In the present work, a unified range index, i.e., L*, considering the cruising speed, the sailing distance, and the volume of an AUV, is proposed for the first time, which can overcome the shortcomings of previous criteria using merely one single parameter, and provide a uniform criterion for the overall range performance of various AUVs. After constructing the expression of the L* index, the relevant data of 49 AUVs from 12 countries worldwide have been collected, and the characteristics of the L* range index in different countries and different categories were compared and discussed. Furthermore, by analyzing the complex factors affecting the range index, methods to enhance the L* range index value, such as efficiency enhancement and drag reduction, have been introduced and discussed. Under this condition, the work proposes a unified and scientific criterion for evaluating the range performance of AUVs for the first time, provides valuable theoretical insight for the development of AUVs with higher performance, and then arouses more attention to the application of the cutting-edge superlubricity technology to the field of underwater vehicles, which might greatly help to accelerate the coming of the era of the superlubricitive engineering.
Wynn R B, Huvenne V A I, Le Bas T P, Murton B J, Connelly D P, Bett B J, Ruhl H A, Morris K J, Peakall J, Parsons D R, et al. Autonomous underwater vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar Geol 352: 451–468 (2014)
Williams S B, Pizarro O, Steinberg D M, Friedman A, Bryson M. Reflections on a decade of autonomous underwater vehicles operations for marine survey at the Australian Centre for Field Robotics. Annu Rev Control 42: 158–165 (2016)
Sahoo A, Dwivedy S K, Robi P S. Advancements in the field of autonomous underwater vehicle. Ocean Eng 181: 145–160 (2019)
Sun T S, Chen G Y, Yang S Q, Wang Y H, Wang Y Z, Tan H, Zhang L H. Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology. Eng Appl Comp Fluid 15(1): 1057–1074 (2021)
Zeng Z, Lian L, Sammut K, He F P, Tang Y H, Lammas A. A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Eng 110: 303–313 (2015)
Meng L S, Yang L, Su T C, Gu H T. Study on the influence of porous material on underwater vehicle’s hydrodynamic characteristics. Ocean Eng 191: 106528 (2019)
He S Y, Jin S B, Chen J Q, Wang D, Wei Y S. Hydrodynamic design and analysis of a hybrid-driven underwater vehicle with ultra-wide speed range. Ocean Eng 264: 112494 (2022)
Li S, Liu J, Xu H X, Zhao H Y, Wang Y Q. Research status of autonomous underwater vehicles in China. Sci Sin Informationis 48(9): 1152–1164 (2018) (in Chinese)
Liu Y H, Yu Z J, Zhang L H, Liu T T, Feng D X, Zhang J K. A fine drag coefficient model for hull shape of underwater vehicles. Ocean Eng 236: 109361 (2021)
Sener M Z, Aksu E. The effects of head form on resistance performance and flow characteristics for a streamlined AUV hull design. Ocean Eng 257: 111630 (2022)
Roper D, Harris C A, Salavasidis G, Pebody M, Templeton R, Prampart T, Kingsland M, Morrison R, Furlong M, Phillips A B, et al. Autosub long range 6000: A multiple-month endurance AUV for deep-ocean monitoring and survey. IEEE J Oceanic Eng 46(4): 1179–1191 (2021)
Chen Q, Zhang L G. Analysis of current situational development trend of US military UUV. Ship Sci Technol 32(7): 129–134 (2010) (in Chinese)
Zhong H W, Li G L, Song L H, Mo C J. Development of large displacement unmanned undersea vehicle in foreign countries : A review. J Unmanned Undersea Syst 26(4): 273–282 (2018) (in Chinese)
Fu J Z, Tao Y R. Unmanned anti-mine cutting-edge weapon— Swedish AUV62MR autonomous underwater vehicle and anti-mine combat. Modern Ship 420(12): 44–47 (2010) (in Chinese)
Li Y P, Yan K C. “CR-02” AUV used in point-survey. Robot (4): 359–362 (2003) (in Chinese)
Zhong H W. Review and prospect of equipment and techniques for unmanned undersea vehicle in foreign countries. J Unmanned Undersea Syst 25(3): 215–225 (2017) (in Chinese)
Desa E, Madhan R, Maurya P, Navelkar G S, Mascarenhas A A M Q, Prabhudesai S P, Afzulpurkar S, Bandodkar S N. The small Maya AUV—Initial field results. Ocean Syst Eng 11, 6–9 (2007)
Zhu M F, Ma L R, Luo J B. Research progress in surface properties of propeller and the scientific challenges. Bulletin of National Natural Science Foundation of China 35(2): 213–222 (2021) (in Chinese)
Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 5(3): 263–284 (2017)
Luo J B, Zhou X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 8(4): 643–665 (2020)
Luo J B, Liu M, Ma L R. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021)
Sagraloff N, Dobler A, Tobie T, Stahl K, Ostrowski J. Development of an oil free water-based lubricant for gear applications. Lubricants 7(4): 33 (2019)
Yilmaz M, Mirza M, Lohner T, Stahl K. Superlubricity in EHL contacts with water-containing gear fluids. Lubricants 7(5): 46 (2019)
Mutyala K C, Doll G L, Wen J G, Sumant A V. Superlubricity in rolling/sliding contacts. Appl Phys Lett 115(10): 103103 (2019)
Divsalar K. Improving the hydrodynamic performance of the SUBOFF bare hull model: A CFD approach. Acta Mech Sin 36(1): 44–56 (2020)
Liu M, Ma L R. Drag reduction methods at solid–liquid interfaces. Friction 10(4): 491–515 (2022)
Monfared Mosghani M, Ali Alidoostan M, Binesh A. Numerical analysis of drag reduction of fish scales inspired Ctenoid-shape microstructured surfaces. Chem Eng Commun 210(6): 970–985 (2023)
Panda J P, Warrior H V. Numerical studies on drag reduction of an axisymmetric body of revolution with antiturbulence surface. J Offshore Mech Arct 143(6): 064501 (2021)
Zhang S S, Ouyang X, Li J, Gao S, Han S H, Liu L H, Wei H. Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir 31(1): 587–593 (2015)
Gose J W, Golovin K, Boban M, Tobelmann B, Callison E, Barros J, Schultz M P, Tuteja A, Perlin M, Ceccio S L. Turbulent skin friction reduction through the application of superhydrophobic coatings to a towed submerged SUBOFF body. J Ship Res 65(3): 266–274 (2021)
Wang B, Wang J D, Chen D R, Sun N, Wang T. Experimental investigation on underwater drag reduction using partial cavitation. Chin Phys B 26(5): 054701 (2017)
Song W C, Wang C, Wei Y J, Lu L R, Xu H. The characteristics and mechanism of microbubble drag reduction on the axisymmetric body. Mod Phys Lett B 32(18): 1850206 (2018)
166
Views
17
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.