Home Friction Article
PDF (10 MB)
Collect
Submit Manuscript
Review Article | Open Access

Recent developments in functional organic polymer coatings for biomedical applications in implanted devices

Yinuo YANGYiran JIAYanran ZHAOHaimang WANGHongyu ZHANG()
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

† Yinuo YANG and Yiran JIA contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Organic polymer coatings have been commonly used in biomedical field, which play an important role in achieving biological antifouling, drug delivery, and bacteriostasis. With the continuous development of polymer science, organic polymer coatings can be designed with complex and advanced functions, which is conducive to the construction of biomedical materials with different performances. According to different physical and chemical properties of materials, biomedical organic polymer coating materials are classified into zwitterionic polymers, non-ionic polymers, and biomacromolecules. The strategies of combining coatings with substrates include physical adsorption, chemical grafting, and self-adhesion. Though the coating materials and construction methods are different, many biomedical polymer coatings have been developed to achieve excellent performances, i.e., enhanced lubrication, anti-inflammation, antifouling, antibacterial, drug release, anti-encrustation, anti-thrombosis, etc. Consequently, a large number of biomedical polymer coatings have been used in artificial lungs, ureteral stent, vascular flow diverter, and artificial joints. In this review, we summarize different types, properties, construction methods, biological functions, and clinical applications of biomedical organic polymer coatings, and prospect future direction for development of organic polymer coatings in biomedical field. It is anticipated that this review can be useful for the design and synthesis of functional organic polymer coatings with various biomedical purposes.

References

[1]

Teo A J T, Mishra A, Park I, Kim Y J, Park W T, Yoon Y J. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2(4): 454–472 (2016)

[2]

Chen Q, Zhang X Y, Liu S Y, Chen K, Feng C N, Li X W, Qi J W, Luo Y, Liu H T, Zhang D K. Cartilage-bone inspired the construction of soft-hard composite material with excellent interfacial binding performance and low friction for artificial joints. Friction 11(7): 1177–1193 (2023)

[3]

Murakami T, Yarimitsu S, Nakashima K, Sawae Y, Sakai N. Influence of synovia constituents on tribological behaviors of articular cartilage. Friction 1(2): 150–162 (2013)

[4]

Hu X Y, Chen H S, Li J, Meng K L, Wang Y M, Li Y J. A microfluidic bleeding model to investigate the effects of blood flow shear on microvascular hemostasis. Friction 10(1): 128–141 (2022)

[5]

Yu W P, Jiang Y, Lin F, Liu J C, Zhou J L. Surface biofunctionalization of tissue engineered for the development of biological heart valves: A review. Coatings 12(9): 1322 (2022)

[6]

Zhang T H, Gao Y, Zhu L L, Zeng Q F, Zhou M. Degradation modeling of degradable copolymers for biomimetic scaffolds. Friction 8(3): 594–603 (2020)

[7]

Zhang X G, Zhang Y L, Jin Z M. A review of the bio-tribology of medical devices. Friction 10(1): 4–30 (2022)

[8]

Agarwal R, Gupta V, Singh J. Additive manufacturing-based design approaches and challenges for orthopaedic bone screws: A state-of-the-art review. J Braz Soc Mech Sci Eng 44(1): 37 (2022)

[9]

Gao L Y, Zhao X D, Ma S H, Ma Z F, Cai M R, Liang Y M, Zhou F. Constructing a biomimetic robust bi-layered hydrophilic lubrication coating on surface of silicone elastomer. Friction 10(7): 1046–1060 (2022)

[10]

Ren Y L, Zhang L, Xie G X, Li Z B, Chen H, Gong H J, Xu W H, Guo D, Luo J B. A review on tribology of polymer composite coatings. Friction 9(3): 429–470 (2021)

[11]

Ge X Y, Chai Z Y, Shi Q Y, Li J J, Tang J W, Liu Y F, Wang W Z. Functionalized graphene-oxide nanosheets with amino groups facilitate macroscale superlubricity. Friction 11(2): 187–200 (2023)

[12]

Yang L M, Zhao X D, Ma Z F, Ma S H, Zhou F. An overview of functional biolubricants. Friction 11(1): 23–47 (2023)

[13]

Wei Q B, Fu T, Lei L L, Liu H, Zhang Y X, Ma S H, Zhou F. Dopamine-triggered one-step functionalization of hollow silica nanospheres for simultaneous lubrication and drug release. Friction 11(3): 410–424 (2023)

[14]

Zhang C X, Chen J M, Liu M M, Liu Y H, Liu Z F, Chu H Y, Cheng Q, Wang J H. Regulation mechanism of biomolecule interaction behaviors on the superlubricity of hydrophilic polymer coatings. Friction 10(1): 94–109 (2022)

[15]

Li L Y, Cui L Y, Zeng R C, Li S Q, Chen X B, Zheng Y F, Kannan M B. Advances in functionalized polymer coatings on biodegradable magnesium alloys–A review. Acta Biomater 79: 23–36 (2018)

[16]

Hou N, Perinpanayagam H, Mozumder M, Zhu J. Novel development of biocompatible coatings for bone implants. Coatings 5(4): 737–757 (2015)

[17]

Zhu Y W, Liu W, Ngai T. Polymer coatings on magnesium-based implants for orthopedic applications. J Polym Sci 60(1): 32–51 (2022)

[18]

Smith J R, Lamprou D A. Polymer coatings for biomedical applications: A review. Trans IMF 92(1): 9–19 (2014)

[19]

Zwaal R F, Schroit A J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89(4): 1121–1132 (1997)

[20]

Liu L Y, Li W C, Liu Q S. Recent development of antifouling polymers: Structure, evaluation, and biomedical applications in nano/micro-structures. WIREs Nanomed Nanobiotechnol 6(6): 599–614 (2014)

[21]

Sin M C, Chen S H, Chang Y. Hemocompatibility of zwitterionic interfaces and membranes. Polym J 46(8): 436–443 (2014)

[22]

Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, et al. Zwitterionic biomaterials. Chem Rev 122(23): 17073–17154 (2022)

[23]

Li S, Cai Y Y, Cao J, Cai M T, Chen Y W, Luo X L. Phosphorylcholine micelles decorated by hyaluronic acid for enhancing antitumor efficiency. Polym Chem 8(16): 2472–2483 (2017)

[24]

Kim H K, Kim K, Byun Y. Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate. Biomaterials 26(17): 3435–3444 (2005)

[25]

Svenningsen S W, Janaszewska A, Ficker M, Petersen J F, Klajnert-Maculewicz B, Christensen J B. Two for the price of one: PAMAM-dendrimers with mixed phosphoryl choline and oligomeric poly(caprolactone) surfaces. Bioconjugate Chem 27(6): 1547–1557 (2016)

[26]

Wu X X, He Y, Lai G C, Zeng R, Tu M. Biomimetic phosphorylcholine-modified bacterial cellulose membranes with cell fouling resistance. Cellulose 27(17): 10061–10075 (2020)

[27]

Zeng R, Xu S, Cai Z, Wen X, Pi P, Cheng J. Progress in betaine-based polymers. Polym Mater Sci Eng 29(3): 186–190 (2013) (in Chinese)

[28]

Racovita S, Trofin M A, Loghin D F, Zaharia M M, Bucatariu F, Mihai M, Vasiliu S. Polybetaines in biomedical applications. Int J Mol Sci 22(17): 9321 (2021)

[29]

Hajipour M J, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: A “key” factor at the nanobiointerface. Biomater Sci 2(9): 1210 (2014)

[30]

Ilčíková M, Tkáč J, Kasák P. Switchable materials containing polyzwitterion moieties. Polymers 7(11): 2344–2370 (2015)

[31]

Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6): 690–718 (2011)

[32]

Paschke S, Lienkamp K. Polyzwitterions: From surface properties and bioactivity profiles to biomedical applications. ACS Appl Polym Mater 2(2): 129–151 (2020)

[33]

Wang T, Wang Y Q, Su Y L, Jiang Z Y. Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer. J Membr Sci 280(1–2): 343–350 (2006)

[34]

Zhang Z, Cheng G, Carr L R, Vaisocherová H, Chen S F, Jiang S Y. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials 29(36): 4719–4725 (2008)

[35]

Langer R. Perspectives and challenges in tissue engineering and regenerative medicine. Adv Mater 21(32–33): 3235–3236 (2009)

[36]

Williams D F. On the mechanisms of biocompatibility. Biomaterials 29(20): 2941–2953 (2008)

[37]

Zhang L, Cao Z Q, Bai T, Carr L, Ella-Menye J R, Irvin C, Ratner B D, Jiang S Y. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 31(6): 553–556 (2013)

[38]

Lin W F, Ma G L, Kampf N, Yuan Z F, Chen S F. Development of long-circulating zwitterionic cross-linked micelles for active-targeted drug delivery. Biomacromolecules 17(6): 2010–2018 (2016)

[39]

Huang P S, Song H J, Wang W W, Sun Y, Zhou J H, Wang X, Liu J J, Liu J F, Kong D L, Dong A J. Integrin-targeted zwitterionic polymeric nanoparticles with acid-induced disassembly property for enhanced drug accumulation and release in tumor. Biomacromolecules 15(8): 3128–3138 (2014)

[40]

Guo Q, Sun H, Wu X J, Yan Z W, Tang C J, Qin Z H, Yao M M, Che P C, Yao F L, Li J J. In situ clickable purely zwitterionic hydrogel for peritoneal adhesion prevention. Chem Mater 32(15): 6347–6357 (2020)

[41]

Huckaby J T, Lai S K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev 124: 125–139 (2018)

[42]

Sousa S F, Peres J, Coelho M, Vieira T F. Analyzing PEGylation through molecular dynamics simulations. ChemistrySelect 3(29): 8415–8427 (2018)

[43]

Veronese F M, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 10(21): 1451–1458 (2005)

[44]

Jeon S I, Lee J H, Andrade J D, De Gennes P G. Protein—Surface interactions in the presence of polyethylene oxide. J Colloid Interface Sci 142(1): 149–158 (1991)

[45]

Vonarbourg A, Passirani C, Saulnier P, Benoit J P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24): 4356–4373 (2006)

[46]

Wang X T, Deng X D, Zhang T D, Zhang J, Chen L L, Wang Y F, Cao X, Zhang Y Z, Zheng X, Yin D C. A versatile hydrophilic and antifouling coating based on dopamine modified four-arm polyethylene glycol by one-step synthesis method. ACS Macro Lett 11(6): 805–812 (2022)

[47]

Wang J, Chen X C, Xue Y F, Hu M, Wang Y B, Ren K F, Ji J. Thermo-triggered ultrafast self-healing of microporous coating for on-demand encapsulation of biomacromolecules. Biomaterials 192: 15–25 (2019)

[48]

Peng L Y, Chang L, Si M T, Lin J X, Wei Y, Wang S T, Liu H L, Han B, Jiang L. Hydrogel-coated dental device with adhesion-inhibiting and colony-suppressing properties. ACS Appl Mater Interfaces 12(8): 9718–9725 (2020)

[49]

England M W, Urata C, Dunderdale G J, Hozumi A. Anti-fogging/self-healing properties of clay-containing transparent nanocomposite thin films. ACS Appl Mater Interfaces 8(7): 4318–4322 (2016)

[50]

Mao T Y, Lu G, Xu C Y, Yu H W, Yu J L. Preparation and properties of polyvinylpyrrolidone-cuprous oxide microcapsule antifouling coating. Prog Org Coat 141: 105317 (2020)

[51]

Jung H S, Cho K J, Ryu S J, Takagi Y, Roche P A, Neuman K C. Biocompatible fluorescent nanodiamonds as multifunctional optical probes for latent fingerprint detection. ACS Appl Mater Interfaces 12(5): 6641–6650 (2020)

[52]

Kuźmińska A, Butruk-Raszeja B A, Stefanowska A, Ciach T. Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds. Colloids Surf B Biointerfaces 192: 111066 (2020)

[53]

Chelminiak D, Ziegler-Borowska M, Kaczmarek H. Polymer coated magnetite nanoparticles for biomedical applications. Part Ⅱ. Fe3O4 nanoparticles coated by synthetic polymers. Polimery 60(2): 87–94 (2015)

[54]

Lee H Y, Lee S H, Xu C J, Xie J, Lee J H, Wu B, Leen Koh A, Wang X Y, Sinclair R, Wang S X, et al. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 19(16): 165101 (2008)

[55]

Jiang J H, Zhu L P, Zhu L J, Zhang H T, Zhu B K, Xu Y Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Appl Mater Interfaces 5(24): 12895–12904 (2013)

[56]

Chan D, Maikawa C L, D’Aquino A I, Raghavan S S, Troxell M L, Appel E A. Polyacrylamide-based hydrogel coatings improve biocompatibility of implanted pump devices. J Biomedical Materials Res 111(7): 910–920 (2023)

[57]

Chan D, Chien J C, Axpe E, Blankemeier L, Baker S W, Swaminathan S, Piunova V A, Zubarev D Y, Maikawa C L, Grosskopf A K, et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv Mater 34(24): e2109764 (2022)

[58]

Zhang K, Yang J L, Sun Y L, Wang Y, Liang J, Luo J, Cui W G, Deng L F, Xu X Y, Wang B, et al. Gelatin-based composite hydrogels with biomimetic lubrication and sustained drug release. Friction 10(2): 232–246 (2022)

[59]

Qiao X J, Qian Z H, Sun W P, Zhu C Y, Li Y X, Luo X L. Phosphorylation of oligopeptides: Design of ultra-hydrophilic zwitterionic peptides for anti-fouling detection of nucleic acids in saliva. Anal Chem 95(29): 11091–11098 (2023)

[60]

Mastouri M, Baachaoui S, Mosbah A, Raouafi N. In silico screening for oligopeptides useful as capture and reporting probes for interleukin-6 biosensing. RSC Adv 12(21): 13003–13013 (2022)

[61]

Zabadaj M, Ciosek-Skibińska P. Quantum dots-assisted 2D fluorescence for pattern based sensing of amino acids, oligopeptides and neurotransmitters. Sensors 19(17): 3655 (2019)

[62]

Giuliani M, Rella R, Fubelli R, Patrolecco F, Di Giovanni S E, Buccheri C, Padovano F, Belli P, Romani M, Rinaldi P, et al. Magnetic resonance imaging appearance of oxidized regenerated cellulose in breast cancer surgery. La Radiol Med 121(9): 688–695 (2016)

[63]

Chojnacka K, Moustakas K, Mikulewicz M. Multifunctional cellulose-based biomaterials for dental applications: A sustainable approach to oral health and regeneration. Ind Crops Prod 203: 117142 (2023)

[64]

Zhang S Y, Yu F, Chen J, Yan D, Gong D N, Chen L B, Chen J Z, Yao Q K. A thin film comprising silk peptide and cellulose nanofibrils implanting on the electrospun poly(lactic acid) fibrous scaffolds for biomedical reconstruction. Int J Biol Macromol 251: 126209 (2023)

[65]

Yorsaeng S, Pornsunthorntawee O, Rujiravanit R. Preparation and characterization of chitosan-coated DBD plasma-treated natural rubber latex medical surgical gloves with antibacterial activities. Plasma Chem Plasma Process 32(6): 1275–1292 (2012)

[66]

Lin M H, Wang Y H, Kuo C H, Ou S F, Huang P Z, Song T Y, Chen Y C, Chen S T, Wu C H, Hsueh Y H, et al. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydr Polym 257: 117639 (2021)

[67]

Theapsak S, Watthanaphanit A, Rujiravanit R. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment. ACS Appl Mater Interfaces 4(5): 2474–2482 (2012)

[68]

Muzzarelli R A A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76(2): 167–182 (2009)

[69]

Niemczyk A, Goszczyńska A, Gołda-Cępa M, Kotarba A, Sobolewski P, El Fray M. Biofunctional catheter coatings based on chitosan-fatty acids derivatives. Carbohydr Polym 225: 115263 (2019)

[70]

Bieser A M, Thomann Y, Tiller J C. Contact-active antimicrobial and potentially self-polishing coatings based on cellulose. Macromol Biosci 11(1): 111–121 (2011)

[71]

Satishkumar R, Sankar S, Yurko Y, Lincourt A, Shipp J, Heniford B T, Vertegel A. Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob Agents Chemother 55(9): 4379–4385 (2011)

[72]

Alkan-Tas B, Durmus-Sayar A, Duman Z E, Sevinis-Ozbulut E B, Unlu A, Binay B, Unal S, Unal H. Antibacterial hybrid coatings from halloysite-immobilized lysostaphin and waterborne polyurethanes. Prog Org Coat 156: 106248 (2021)

[73]

Vaterrodt A, Thallinger B, Daumann K, Koch D, Guebitz G M, Ulbricht M. Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer-by-layer assembly. Langmuir 32(5): 1347–1359 (2016)

[74]

Zhang K, Xue R, Shen S W. Heparin coating technology in cardiopulmonary bypass. MATEC Web Conf 100: 04019 (2017)

[75]

Gott V L, Whiffen J D, Dutton R C. Heparin bonding on colloidal graphite surfaces. Science 142(3597): 1297–1298 (1963)

[76]

Wijelath E, Namekata M, Murray J, Furuyashiki M, Zhang S Y, Coan D, Wakao M, Harris R B, Suda Y S, Wang L C, et al. Multiple mechanisms for exogenous heparin modulation of vascular endothelial growth factor activity. J Cell Biochem 111(2): 461–468 (2010)

[77]

Lin T L, Wen H P, Shih C C, Shih J S. Preparation and application of immobilized fullerene C60-heparin for anticoagulation of blood. J Chin Chemical Soc 59(12): 1489–1492 (2012)

[78]

Berry L, Chan A. Review on patents for potent anticoagulant antithrombin-heparin covalent complexes that control thrombosis in vivo. Recent Pat Biomed Eng 1(2): 82–91 (2008)

[79]

Wang X Y, Xie Y W, Jiang N, Wang J Y, Liang H R, Liu D Y, Yang N, Sang X Y, Feng Y, Chen R, et al. Enhanced antimalarial efficacy obtained by targeted delivery of artemisinin in heparin-coated magnetic hollow mesoporous nanoparticles. ACS Appl Mater Interfaces 13(1): 287–297 (2021)

[80]

Kim S, Ko S, Kang S M. Adhesive heparin coating for marine antifouling applications. Macromol Res 24(7): 645–649 (2016)

[81]

Han Q, Tao F, Yang P. Amyloid-like assembly to form film at interfaces: Structural transformation and application. Macromol Biosci 23(11): e2300172 (2023)

[82]

Liu Y C, Tao F, Miao S T, Yang P. Controlling the structure and function of protein thin films through amyloid-like aggregation. Acc Chem Res 54(15): 3016–3027 (2021)

[83]

Liu R R, Zhao J, Han Q, Hu X Y, Wang D, Zhang X, Yang P. One-step assembly of a biomimetic biopolymer coating for particle surface engineering. Adv Mater 30(38): 1802851 (2018)

[84]

Qin R R, Liu Y C, Tao F, Li C, Cao W F, Yang P. Protein-bound freestanding 2D metal film for stealth information transmission. Adv Mater 31(5): e1803377 (2019)

[85]

Li C, Xu L, Zuo Y Y, Yang P. Tuning protein assembly pathways through superfast amyloid-like aggregation. Biomater Sci 6(4): 836–841 (2018)

[86]

Yang P. Direct biomolecule binding on nonfouling surfaces via newly discovered supramolecular self-assembly of lysozyme under physiological conditions. Macromol Biosci 12(8): 1053–1059 (2012)

[87]

Xu Y, Liu Y C, Hu X Y, Qin R R, Su H, Li J L, Yang P. The synthesis of a 2D ultra-large protein supramolecular nanofilm by chemoselective thiol–disulfide exchange and its emergent functions. Angew Chem Int Ed 59(7): 2850–2859 (2020)

[88]

Chen M M, Yang F C, Chen X, Qin R R, Pi H M, Zhou G J, Yang P. Crack suppression in conductive film by amyloid-like protein aggregation toward flexible device. Adv Mater 33(44): e2104187 (2021)

[89]

Wu Z F, Yang P. Simple multipurpose surface functionalization by phase transited protein adhesion. Adv Materials Inter 2(2): 1400401 (2015)

[90]

Hu X Y, Tian J H, Li C, Su H, Qin R R, Wang Y F, Cao X, Yang P. Amyloid-like protein aggregates: A new class of bioinspired materials merging an interfacial anchor with antifouling. Adv Mater 32(23): 2000128 (2020)

[91]

Yang Q M, Cao J, Yang F C, Liu Y C, Chen M M, Qin R R, Chen L X, Yang P. Amyloid-like aggregates of bovine serum albumin for extraction of gold from ores and electronic waste. Chem Eng J 416: 129066 (2021)

[92]

Yang Q M, Zhao J, Muhammad A, Tian L H, Liu Y C, Chen L X, Yang P. Biopolymer coating for particle surface engineering and their biomedical applications. Mater Today Bio 16: 100407 (2022)

[93]

Li Y F, Li K, Wang X Y, Cui M K, Ge P, Zhang J H, Qiu F, Zhong C. Conformable self-assembling amyloid protein coatings with genetically programmable functionality. Sci Adv 6(21): eaba1425 (2020)

[94]

Li J L, Tian J H, Gao Y T, Qin R R, Pi H M, Li M J, Yang P. All-natural superhydrophobic coating for packaging and blood-repelling materials. Chem Eng J 410: 128347 (2021)

[95]

Zhang H L, Li D K, Huang J X, Guo Z G, Liu W M. Advance in structural classification and stability study of superamphiphobic surfaces. J Bionic Eng 20(1): 366–389 (2023)

[96]

Schulz F, Hühn J, Werner M, Hühn D, Kvelstad J, Koert U, Wutke N, Klapper M, Fröba M, Baulin V, et al. Local environments created by the ligand coating of nanoparticles and their implications for sensing and surface reactions. Acc Chem Res 56(17): 2278–2285 (2023)

[97]

Huang Z H, Chen J Z, Li R, Shi S Q, Gong Y K. Mussel adhesion and cell membrane antifouling mimetic strategies for durable fouling-resistant coating. Prog Org Coat 182: 107636 (2023)

[98]

Yan Y F, Sun T, Zhang H B, Ji X L, Sun Y L, Zhao X, Deng L F, Qi J, Cui W G, Santos H A, et al. Euryale ferox seed-inspired superlubricated nanoparticles for treatment of osteoarthritis. Adv Funct Materials 29(4): 1807559 (2019)

[99]

Edmondson S, Osborne V L, Huck W T S. Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1): 14–22 (2004)

[100]

Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H A. Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chem Rev 109(11): 5437–5527 (2009)

[101]

Wang X Z, Han Y, Zhao W W, Zhang H Y. Polyelectrolyte lubrication coatings for biomedical applications. J Tsinghua Univ (Sci Technol) 60(8): 630–638 (2020) (in Chinese)

[102]

Hansson S, Trouillet V, Tischer T, Goldmann A S, Carlmark A, Barner-Kowollik C, Malmström E. Grafting efficiency of synthetic polymers onto biomaterials: A comparative study of grafting-from versus grafting-to. Biomacromolecules 14(1): 64–74 (2013)

[103]

Yang L, Wang C P, Li L, Zhu F, Ren X C, Huang Q, Cheng Y Y, Li Y W. Bioinspired integration of naturally occurring molecules towards universal and smart antibacterial coatings. Adv Funct Materials 32(4): 2108749 (2022)

[104]

Król P, Chmielarz P. Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials. Prog Org Coat 77(5): 913–948 (2014)

[105]

Li G Z, Xue H, Cheng G, Chen S F, Zhang F B, Jiang S Y. Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage. J Phys Chem B 112(48): 15269–15274 (2008)

[106]

Li N, Li T, Qiao X Y, Li R, Yao Y, Gong Y K. Universal strategy for efficient fabrication of blood compatible surfaces via polydopamine-assisted surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization of zwitterions. ACS Appl Mater Interfaces 12(10): 12337–12344 (2020)

[107]

Li L L, Xiang Y Y, Liu H, Ma S H, Li B, Ma Z F, Wei Q B, Yu B, Zhou F. Temperature-responsive nanofibrous membranes fabricated by subsurface-initiated atom transfer radical polymerization for controllable oil/water separation. Acta Chim Sin 79(3): 353 (2021)

[108]

Feng H Y, Ma Z F, Zhang Y J, Liu F Z, Ma S H, Zhang R, Cai M R, Yu B, Zhou F. Polystyrene nanospheres modified with a hydrophilic polymer brush through subsurface-initiated atom transfer radical polymerization as biolubricating additive. Macro Mater Eng 305(6): 2000135 (2020)

[109]

Yagci Y, Jockusch S, Turro N J. Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 43(15): 6245–6260 (2010)

[110]

Bai J, Bai S, Ren L, Zhu K, Zhao Y, Li X, Yuan X. Trehalose-modified poly (vinyl alcohol) and their antifogging/antifrosting coatings. Chem Res Chin Univ (Chinese) 42(8): 2683–2688 (2021)

[111]

Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung U I, Nakamura K, Kawaguchi H. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater 3(11): 829–836 (2004)

[112]

Wan L, Wang Y, Tan X L, Sun Y L, Luo J, Zhang H Y. Biodegradable lubricating mesoporous silica nanoparticles for osteoarthritis therapy. Friction 10(1): 68–79 (2022)

[113]

Siow K S, Kumar S, Griesser H J. Low-pressure plasma methods for generating non-reactive hydrophilic and hydrogel-like bio-interface coatings–A review. Plasma Process Polym 12(1): 8–24 (2015)

[114]

Zanini S, Polissi A, Maccagni E A, Dell’Orto E C, Liberatore C, Riccardi C. Development of antibacterial quaternary ammonium silane coatings on polyurethane catheters. J Colloid Interface Sci 451: 78–84 (2015)

[115]

Zou X P, Kang E T, Neoh K G. Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on Si(100) surfaces for reduction in protein adsorption and platelet adhesion. Plasmas Polym 7(2): 151–170 (2002)

[116]

Chen J P, Chiang Y P. Surface modification of non-woven fabric by DC pulsed plasma treatment and graft polymerization with acrylic acid. J Membr Sci 270(1–2): 212–220 (2006)

[117]

Lee H, Dellatore S M, Miller W M, Messersmith P B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849): 426–430 (2007)

[118]

Wang J X, He C J. Photopolymerized biomimetic self-adhesive Polydimethylsiloxane-based amphiphilic cross-linked coating for anti-biofouling. Appl Surf Sci 463: 1097–1106 (2019)

[119]

Han Y, Zhao W W, Zheng Y W, Wang H M, Sun Y L, Zhang Y F, Luo J, Zhang H Y. Self-adhesive lubricated coating for enhanced bacterial resistance. Bioact Mater 6(8): 2535–2545 (2021)

[120]

Qin Z H, Zhao J, Wang H M, Wang B, Zheng L, Zhang H Y. Bioinspired self-adhesive lubricating copolymer with bacteriostatic and bactericidal synergistic effect for marine biofouling prevention. ACS Appl Polym Mater 4(3): 2169–2180 (2022)

[121]

Mauldin T C, Kessler M R. Self-healing polymers and composites. Int Mater Rev 55(6): 317–346 (2010)

[122]

Li H Y, Cui Y X, Wang Q, Li S, Wang H Y, Wang B H. Advances in self-healing coating materials. Polym Mater Sci Eng 32(10): 177–182 (2016) (in Chinese)

[123]

White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Autonomic healing of polymer composites. Nature 409(6822): 794–797 (2001)

[124]

Shchukin D G. Container-based multifunctional self-healing polymer coatings. Polym Chem 4(18): 4871 (2013)

[125]

Koh E, Lee S J, Shin J, Kim Y W. Renewable polyurethane microcapsules with isosorbide derivatives for self-healing anticorrosion coatings. Ind Eng Chem Res 52(44): 15541– 15548 (2013)

[126]

Song Y K, Chung C M. Repeatable self-healing of a microcapsule-type protective coating. Polym Chem 4(18): 4940 (2013)

[127]

Dong Y H, Wu K X, Yin Y Y, Geng C D, Zhou Q. Shape memory self-healing coating based on photothermal effect of PPy@PDA nanoparticles. Synth Met 280: 116869 (2021)

[128]

Wang Y X, Sun Y L, Avestro A J, McGonigal P R, Zhang H Y. Supramolecular repair of hydration lubrication surfaces. Chem 8(2): 480–493 (2022)

[129]

Zhao Y L, Qian Y F, Wang H M, Zhao W W, Zhao J, Zhang H Y. Bioinspired polycation functionalization of the polyurethane surface for enhanced lubrication, antibacterial property, and anticoagulation. ACS Appl Polym Mater 5(6): 3999–4010 (2023)

[130]

Wei Q B, Liu X Q, Yue Q Y, Ma S H, Zhou F. Mussel-inspired one-step fabrication of ultralow-friction coatings on diverse biomaterial surfaces. Langmuir 35(24): 8068–8075 (2019)

[131]

Li Q P, Yin Q X, Hou B H, Zhou L. Bioinspired double self-adhesion coating based on dopamine, coating resin and phosphorylcholine for surface lubrication and antifouling functionalization. Des Monomers Polym 24(1): 106–112 (2021)

[132]

Li Y P, Liu W, Liu Y H, Ren Y, Wang Z G, Zhao B S, Huang S S, Xu J Z, Li Z M. Highly improved aqueous lubrication of polymer surface by noncovalently bonding hyaluronic acid-based hydration layer for endotracheal intubation. Biomaterials 262: 120336 (2020)

[133]

Han L B, Xiang L, Zhang J W, Chen J S, Liu J F, Yan B, Zeng H B. Biomimetic lubrication and surface interactions of dopamine-assisted zwitterionic polyelectrolyte coatings. Langmuir 34(38): 11593–11601 (2018)

[134]

Wang Y, Xu Y H, Zhai W J, Zhang Z N, Liu Y H, Cheng S J, Zhang H Y. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat Commun 13: 5056 (2022)

[135]

Cheng L, Wang Y, Sun G M, Wen S Z, Deng L F, Zhang H Y, Cui W G. Hydration-enhanced lubricating electrospun nanofibrous membranes prevent tissue adhesion. Research 2020: 4907185 (2020)

[136]

Wang Y X, Sun Y L, Gu Y H, Zhang H Y. Articular cartilage-inspired surface functionalization for enhanced lubrication. Adv Materials Inter 6(12): 1900180 (2019)

[137]

Jiao Y Y, Liu S Z, Sun Y L, Yue W, Zhang H Y. Bioinspired surface functionalization of nanodiamonds for enhanced lubrication. Langmuir 34(41): 12436–12444 (2018)

[138]

Bridges A W, García A J. Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J Diabetes Sci Technol 2(6): 984–994 (2008)

[139]

Lebaudy E, Fournel S, Lavalle P, Vrana N E, Gribova V. Recent advances in antiinflammatory material design. Adv Healthc Mater 10(1): e2001373 (2021)

[140]

Wu D, Chen X Y, Chen T C, Ding C M, Wu W, Li J S. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials. Sci Rep 5: 11105 (2015)

[141]

Qiao Y S, Zhang Q, Wang Q, Lin J, Wang J S, Li Y, Wang L. Synergistic anti-inflammatory coating “zipped up” on polypropylene hernia mesh. ACS Appl Mater Interfaces 13(30): 35456–35468 (2021)

[142]

Zhao W W, Yu Y K, Zhang Z Y, He D M, Zhang H Y. Bioinspired nanospheres as anti-inflammation and antisenescence interfacial biolubricant for treating temporomandibular joint osteoarthritis. ACS Appl Mater Interfaces 14(31): 35409–35422 (2022)

[143]

Zhao Q, Wang C, Liu Y, Wang S. Bacterial adhesion on the metal-polymer composite coatings. Int J Adhes Adhes 27(2): 85–91 (2007)

[144]

Paulussen S, Vangeneugden D, Goossens O, Dekempeneer E. Antimicrobial coatings obtained in an atmospheric pressure dielectric barrier glow discharge. MRS Online Proc Libr 724(1): N8.13 (2002)

[145]

Lan X R, Lei Y, He Z K, Yin A L, Li L H, Tang Z L, Li M L, Wang Y B. A transparent hydrophilic anti-biofouling coating for intraocular lens materials prepared by “bridging” of the intermediate adhesive layer. J Mater Chem B 9(17): 3696–3704 (2021)

[146]

Bargathulla I, Manivannan N, Gopinath A, Mathivanan N, Nasar A S. High density star poly HEMA containing bis-indole rich dendrimer inner core for integrated anti-fouling and anti-bacterial coating applications. Eur Polym J 170: 111170 (2022)

[147]

Liu J J, Qu S X, Suo Z G, Yang W. Functional hydrogel coatings. Natl Sci Rev 8(2): nwaa254 (2021)

[148]

Wang J J, Hu H K, Yang Z L, Wei J, Li J. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties. Mater Sci Eng C Mater Biol Appl 61: 376–386 (2016)

[149]

Zhang J, Chen L D, Shen B, Chen L Q, Feng J. Ultra-high strength poly(N-(2-hydroxyethyl)acrylamide)/chitosan hydrogel with “repelling and killing” bacteria property. Carbohydr Polym 225: 115160 (2019)

[150]

Burzava A L S, Jasieniak M, Cockshell M P, Voelcker N H, Bonder C S, Griesser H J, Moore E. Surface-grafted hyperbranched polyglycerol coating: Varying extents of fouling resistance across a range of proteins and cells. ACS Appl Bio Mater 3(6): 3718–3730 (2020)

[151]

Sun J J, Tan H Q, Liu H, Jin D W, Yin M, Lin H D, Qu X, Liu C S. A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomater Sci 8(24): 6946–6956 (2020)

[152]

Wang C H, Yi Z L, Sheng Y F, Tian L, Qin L, Ngai T, Lin W. Development of a novel biodegradable and anti-bacterial polyurethane coating for biomedical magnesium rods. Mater Sci Eng C 99: 344–356 (2019)

[153]

Wei T, Yu Q, Zhan W J, Chen H. A smart antibacterial surface for the on-demand killing and releasing of bacteria. Adv Healthc Mater 5(4): 449–456 (2016)

[154]

Liu S Z, Zhang Q, Han Y, Sun Y L, Zhang Y F, Zhang H Y. Bioinspired surface functionalization of titanium alloy for enhanced lubrication and bacterial resistance. Langmuir 35(40): 13189–13195 (2019)

[155]

Shi X, Ye Y M, Wang H, Liu F, Wang Z J. Designing pH-responsive biodegradable polymer coatings for controlled drug release via vapor-based route. ACS Appl Mater Interfaces 10(44): 38449–38458 (2018)

[156]

Yang Q L, Yuan F, Chen J L, Zhou H, Yang G S, Zhu J. Delayed sustained drug release from electrostatic powder coated tablets with ultrafine polymer blends. Powder Technol 394: 496–503 (2021)

[157]

Feng X M, Ren Q, Zhang W Z, Shen H F, Rong Z X, Fang C, Chen H Z. Preparation and evaluation of a novel delayed-onset sustained-release system of propranolol hydrochloride. J Pharm Pharmacol 60(7): 817–822 (2010)

[158]

Han Y, Liu S Z, Sun Y L, Gu Y H, Zhang H Y. Bioinspired surface functionalization of titanium for enhanced lubrication and sustained drug release. Langmuir 35(20): 6735–6741 (2019)

[159]

Han Y, Yang J L, Zhao W W, Wang H M, Sun Y L, Chen Y J, Luo J, Deng L F, Xu X Y, Cui W G, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact Mater 6(10): 3596–3607 (2021)

[160]

Mao X W, Chen K X, Zhao Y L, Xiong C R, Luo J, Wang Y G, Wang B, Zhang H Y. Bioinspired surface functionalization of biodegradable mesoporous silica nanoparticles for enhanced lubrication and drug release. Friction 11(7): 1194–1211 (2023)

[161]

Goulet-Hanssens A, Lai Wing Sun K, Kennedy T E, Barrett C J. Photoreversible surfaces to regulate cell adhesion. Biomacromolecules 13(9): 2958–2963 (2012)

[162]

Davila J, Chassepot A, Longo J, Boulmedais F, Reisch A, Frisch B, Meyer F, Voegel J C, Mésini P J, Senger B, et al. Cyto-mechanoresponsive polyelectrolyte multilayer films. J Am Chem Soc 134(1): 83–86 (2012)

[163]

Chang H, Hu M, Zhang H, Ren K F, Li B C, Li H, Wang L M, Lei W X, Ji J. Improved endothelial function of endothelial cell monolayer on the soft polyelectrolyte multilayer film with matrix-bound vascular endothelial growth factor. ACS Appl Mater Interfaces 8(23): 14357– 14366 (2016)

[164]

Chang H, Zhang H, Hu M, Chen J Y, Li B C, Ren K F, Martins M C, Barbosa M A, Ji J. Stiffness of polyelectrolyte multilayer film influences endothelial function of endothelial cell monolayer. Colloids Surf B Biointerfaces 149: 379–387 (2017)

[165]

Xu R N, Ma S H, Wu Y, Lee H, Zhou F, Liu W M. Adaptive control in lubrication, adhesion, and hemostasis by Chitosan–Catechol–pNIPAM. Biomater Sci 7(9): 3599–3608 (2019)

[166]

Zhang K, Wang Y, Sun T, Wang B, Zhang H Y. Bioinspired surface functionalization for improving osteogenesis of electrospun polycaprolactone nanofibers. Langmuir 34(50): 15544–15550 (2018)

[167]

Lange D, Chew B H. Update on ureteral stent technology. Ther Adv Urol 1(3): 143–148 (2009)

[168]

Chew B H, Duvdevani M, Denstedt J D. New developments in ureteral stent design, materials and coatings. Expert Rev Med Devices 3(3): 395–403 (2006)

[169]

Wang Y, Zhai W J, Cheng S J, Li J H, Zhang H Y. Surface-functionalized design of blood-contacting biomaterials for preventing coagulation and promoting hemostasis. Friction 11(8): 1371–1394 (2023)

[170]

Tunney M M, Gorman S P. Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use. Biomaterials 23(23): 4601–4608 (2002)

[171]

Dayyoub E, Frant M, Pinnapireddy S R, Liefeith K, Bakowsky U. Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. Int J Pharm 531(1): 205–214 (2017)

[172]

Frant M, Dayyoub E, Bakowsky U, Liefeith K. Evaluation of a ureteral catheter coating by means of a BioEncrustation in vitro model. Int J Pharm 546(1–2): 86–96 (2018)

[173]

Qian Y F, Zhao J, Liu L, Hu H, Wang B, Zhang H Y. Bioinspired phosphorylcholine coating for surface functionalization of interventional biomedical implants with bacterial resistance and anti-encrustation properties. Langmuir 38(11): 3597–3606 (2022)

[174]

Zhang M L, Pauls J P, Bartnikowski N, Haymet A B, Chan C H H, Suen J Y, Schneider B, Ki K K, Whittaker A K, Dargusch M S, et al. Anti-thrombogenic surface coatings for extracorporeal membrane oxygenation: A narrative review. ACS Biomater Sci Eng 7(9): 4402–4419 (2021)

[175]

Henkes H, Bhogal P, Aguilar Pérez M, Lenz-Habijan T, Bannewitz C, Peters M, Sengstock C, Ganslandt O, Lylyk P, Monstadt H. Anti-thrombogenic coatings for devices in neurointerventional surgery: Case report and review of the literature. Interv Neuroradiol 25(6): 619–627 (2019)

[176]

Anderson A B, Tran T H, Hamilton M J, Chudzik S J, Hastings B P, Melchior M J, Hergenrother R W. Platelet deposition and fibrinogen binding on surfaces coated with heparin or friction-reducing polymers. AJNR Am J Neuroradiol 17(5): 859–863 (1996)

[177]

Mou X H, Zhang H B, Qiu H, Zhang W T, Wang Y, Xiong K Q, Huang N, Santos H A, Yang Z L. Mussel-inspired and bioclickable peptide engineered surface to combat thrombosis and infection. Research 2022: 9780879 (2022)

[178]

Cheng Q H, Shafiq M, Rafique M, Shen L, Mo X M, Wang K. Extracellular matrix and nitric oxide based functional coatings for vascular stents. Eng Regen 3(2): 149–153 (2022)

[179]

Leslie D C, Waterhouse A, Berthet J B, Valentin T M, Watters A L, Jain A, Kim P, Hatton B D, Nedder A, Donovan K, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol 32(11): 1134–1140 (2014)

[180]

Ma Q, Shi X Y, Tan X, Wang R, Xiong K Q, Maitz M F, Cui Y Y, Hu Z M, Tu Q F, Huang N, et al. Durable endothelium-mimicking coating for surface bioengineering cardiovascular stents. Bioact Mater 6(12): 4786–4800 (2021)

[181]

Yu H, Qiu H, Ma W M, Maitz M F, Tu Q F, Xiong K Q, Chen J, Huang N, Yang Z L. Endothelium-mimicking surface combats thrombosis and biofouling via synergistic long-and short-distance defense strategy. Small 17(24): e2100729 (2021)

[182]

Yang Z L, Yang Y, Zhang L, Xiong K Q, Li X Y, Zhang F, Wang J, Zhao X, Huang N. Mussel-inspired catalytic selenocystamine-dopamine coatings for long-term generation of therapeutic gas on cardiovascular stents. Biomaterials 178: 1–10 (2018)

[183]

Yu H, Yu S X, Qiu H, Gao P, Chen Y Z, Zhao X, Tu Q F, Zhou M G, Cai L, Huang N, et al. Nitric oxide-generating compound and bio-clickable peptide mimic for synergistically tailoring surface anti-thrombogenic and anti-microbial dual-functions. Bioact Mater 6(6): 1618–1627 (2021)

[184]

Qiu H, Tu Q F, Gao P, Li X Y, Maitz M F, Xiong K Q, Huang N, Yang Z L. Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents. Biomaterials 269: 120626 (2021)

[185]

Chen Y, Gao P, Huang L, Tan X, Zhou N L, Yang T, Qiu H, Dai X, Michael S, Tu Q F, et al. A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent. Nat Commun 12: 7079 (2021)

[186]

Qiu H, Qi P K, Liu J X, Yang Y, Tan X, Xiao Y, Maitz M F, Huang N, Yang Z L. Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials 207: 10–22 (2019)

[187]

Cao J F, Yang S H, Liao Y J, Wang Y, He J, Xiong C D, Shi K, Hu X L. Evaluation of polyetheretherketone composites modified by calcium silicate and carbon nanotubes for bone regeneration: Mechanical properties, biomineralization and induction of osteoblasts. Front Bioeng Biotechnol 11: 1271140 (2023)

[188]

Safavi M S, Khalil-Allafi J, Visai L. Improved osteogenic activity of NiTi orthopedic implant by HAp-Nb2O5 composite coatings: Materials and biological points of view. Biomater Adv 150: 213435 (2023)

[189]

Uzulmez B, Demirsoy Z, Can O, Gulseren G. Bioinspired multi-layer biopolymer-based dental implant coating for enhanced osseointegration. Macromol Biosci 23(7): e2300057 (2023)

[190]

Yakufu M, Wang Z L, Liu J G, Zhang P B. Bionic manufacturing strategy of hydroxyapatite-coated polyether ether ketone scaffolds for promoting mineralization and osseointegration. Mater Des 223: 111193 (2022)

[191]

Gao Y T, Pang Y Y, Wei S, Han Q, Miao S T, Li M, Tian J H, Fu C Y, Wang Z G, Zhang X, et al. Amyloid-mediated nanoarchitectonics with biomimetic mineralization of polyetheretherketone for enhanced osseointegration. ACS Appl Mater Interfaces 15(8): 10426–10440 (2023)

[192]

Li C, Lu D Y, Deng J J, Zhang X, Yang P. Amyloid-like rapid surface modification for antifouling and In-depth remineralization of dentine tubules to treat dental hypersensitivity. Adv Mater 31(46): e1903973 (2019)

[193]

Zhao W W, Wang H, Wang H M, Han Y, Zheng Z B, Liu X D, Feng B, Zhang H Y. Light-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug delivery and lubrication enhancement for the treatment of osteoarthritis. Nanoscale 13(13): 6394–6399 (2021)

[194]

Combes A, Peek G J, Hajage D, Hardy P, Abrams D, Schmidt M, Dechartres A, Elbourne D. ECMO for severe ARDS: Systematic review and individual patient data meta-analysis. Intensive Care Med 46(11): 2048–2057 (2020)

[195]

Ontaneda A, Annich G M. Novel surfaces in extracorporeal membrane oxygenation circuits. Front Med 5: 321 (2018)

[196]

Videm V, Svennevig J L, Fosse E, Semb G, Osterud A, Mollnes T E. Reduced complement activation with heparin-coated oxygenator and tubings in coronary bypass operations. J Thorac Cardiovasc Surg 103(4): 806–813 (1992)

[197]

Øvrum E, Tangen G, Øystese R, Ringdal M A L, Istad R. Heparin-coated circuits (duraflo Ⅱ) with reduced versus full anticoagulation during coronary artery bypass surgery. J Card Surg 18(2): 140–146 (2003)

[198]

Vanek T, Jares M, Snircova J, Maly M. Fibrinolysis in coronary artery surgery: Detection by thromboelastography. Interact Cardiovascular Thorac Surg 6(6): 700–704 (2007)

[199]

Schulze C J, Han L, Ghorpade N, Etches W S, Stang L, Koshal A, Wang S H. Phosphorylcholine-coated circuits improve preservation of platelet count and reduce expression of proinflammatory cytokines in CABG: A prospective randomized trial. J Card Surg 24(4): 363–368 (2009)

[200]

Tayama E, Hayashida N, Akasu K, Kosuga T, Fukunaga S, Akashi H, Kawara T, Aoyagi S. Biocompatibility of heparin-coated extracorporeal bypass circuits: New heparin bonded bioline system. Artif Organs 24(8): 618–623 (2000)

[201]

Chew B H, Davoudi H, Li J, Denstedt J D. An in vivo porcine evaluation of the safety, bioavailability, and tissue penetration of a ketorolac drug-eluting ureteral stent designed to improve comfort. J Endourol 24(6): 1023–1029 (2010)

[202]

Sali G M, Joshi H B. Ureteric stents: Overview of current clinical applications and economic implications. Int J Urol 27(1): 7–15 (2020)

[203]

Venkatesan N, Shroff S, Jayachandran K, Doble M. Polymers as ureteral stents. J Endourol 24(2): 191–198 (2010)

[204]

Al-Aown A, Kyriazis I, Kallidonis P, Kraniotis P, Rigopoulos C, Karnabatidis D, Petsas T, Liatsikos E. Ureteral stents: New ideas, new designs. Ther Adv Urol 2(2): 85–92 (2010)

[205]

Girdhar G, Andersen A, Pangerl E, Jahanbekam R, Ubl S, Nguyen K, Wainwright J, Wolf M F. Thrombogenicity assessment of pipeline flex, pipeline shield, and FRED flow diverters in an in vitro human blood physiological flow loop model. J Biomed Mater Res A 106(12): 3195–3202 (2018)

[206]

Hagen M W, Girdhar G, Wainwright J, Hinds M T. Thrombogenicity of flow diverters in an ex vivo shunt model: Effect of phosphorylcholine surface modification. J NeuroIntervent Surg 9(10): 1006–1011 (2017)

[207]

Chen H, Sun T, Yan Y F, Ji X L, Sun Y L, Zhao X, Qi J, Cui W G, Deng L F, Zhang H Y. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials 242: 119931 (2020)

[208]

Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym J 47(9): 585–597 (2015)

[209]

Zhou Z Y, Luo R F, Chen L, Hu C, Chen C, Maitz M F, Li L H, Yang L, Deng D, An Y Q, et al. Dressing blood-contacting devices with platelet membrane enables large-scale multifunctional biointerfacing. Matter 5(7): 2334–2351 (2022)

[210]

Shen L, Xie W P, Ni C B, Xie Y X, Miao L J, Zhao W J. Self-healing anticorrosive coatings inspired by the biomimetic porous organic cage nanocontainer for mussels. Mater Today Nano 24: 100395 (2023)

[211]

Woeppel K, Dhawan V, Shi D L, Cui X T. Nanotopography-enhanced biomimetic coating maintains bioactivity after weeks of dry storage and improves chronic neural recording. Biomaterials 302: 122326 (2023)

[212]

Zhou H N, Xu Q M, Zhao J, Luo H J, Huang X, Huang J Z. Biomimetic super slippery surface with excellent and durable anti-icing property for immovable heritage conservation. Prog Org Coat 184: 107818 (2023)

[213]

Kotlarz M, Ferreira A M, Gentile P, Dalgarno K. Bioprinting of cell-laden hydrogels onto titanium alloy surfaces to produce a bioactive interface. Macromol Biosci 22(6): e2200071 (2022)

Friction
Pages 2399-2440
Cite this article:
YANG Y, JIA Y, ZHAO Y, et al. Recent developments in functional organic polymer coatings for biomedical applications in implanted devices. Friction, 2024, 12(11): 2399-2440. https://doi.org/10.1007/s40544-023-0850-7
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return