Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Polymers are widely used in bearing applications. In the case of water-lubricated stern tube bearings, thermoplastic polyurethane (TPU)-based composites are used due to their excellent wear resistance, corrosion resistance, and tunable mechanical properties. Their tribological performance, however, depends on operating conditions. In this work, TPU was blended with carbon fiber, graphene platelet, and ultra-high molecular weight polyethylene (UHMWPE). Friction tests of TPU based-composites against copper countersurface were carried out in water to mimic the actual operating conditions of the bearing. Most of the resulting contacts were in the boundary lubrication regime, in which friction was attributed to both contact mechanics of asperities as well as water lubrication. Our results show that the viscoelasticity of TPU has a considerable impact on its tribological performance. Water lubrication at 50 °C promotes the softening of polymer surface material during sliding, resulting in higher fluctuation in the coefficient of friction and wear loss. This is attributed to the reduced thermomechanical properties. In addition, Schallamach waviness is observed on worn surface. The tribological properties of TPU are significantly improved by the inclusion of carbon fiber, graphene platelet, and UHMWPE. The formation of graphene transfer-layers and UHMWPE transfer film reduces friction and wear loss, while the inclusion of carbon fiber enhances wear resistance due to improved mechanical properties and load bearing capacity.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.