AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (7.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Boundary-lubricated biomaterials with drug delivery for osteoarthritis treatment

Junyu WUKaixuan REN( )Jingbo YIN( )
Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Show Author Information

Graphical Abstract

Abstract

The good lubrication ability of articular cartilage holds significant importance in our daily lives. Osteoarthritis (OA), the most prevalent degenerative joint disease, causes cartilage damage, increased friction, and inflammation. However, the current clinical treatments for OA exhibit some defects. Recently, the sustained drug release systems with lubricating function have attracted considerable attention for treating OA. This review introduces the lubrication mechanism of cartilage, focusing particularly on the boundary lubrication mechanism. The research progress of boundary-lubricated biomaterials with drug delivery, including microcarriers, hydrogels, and nanoparticles in the treatment of OA by improving inter-articular lubrication and relieving inflammation is discussed and summarized. The efficacy and challenges of boundary-lubricated biomaterials with drug delivery in the treatment of OA are summarized, and the prospects are also discussed.

References

[1]

Wang, Z, Le, H, Wang, Y, Liu, H, Li, Z, Yang, X, Wang, C, Ding, J, Chen, X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioactive Materials 8(5): 317–338 (in Chinese) (2022)

[2]

Hunter D J, Bierma-Zeinstra S. Osteoarthritis. Lancet 393(10182): 1745–1759 (2019)

[3]

Jevsevar D S, Brown G A, Jones D L, Matzkin E G, Manner P A, Mooar P, Schousboe J T, Stovitz S, Sanders J O, Bozic K J, et al. The American Academy of Orthopaedic Surgeons evidence-based guideline on: Treatment of osteoarthritis of the knee, 2nd edition. J Bone Joint Surg Am 95(20): 1885–1886 (2013)

[4]

Salmon J H, Rat A C, Sellam J, Michel M, Eschard J P, Guillemin F, Jolly D, Fautrel B. Economic impact of lower-limb osteoarthritis worldwide: A systematic review of cost-of-illness studies. Osteoarthr Cartil 24(9): 1500–1508 (2016)

[5]

Morgese G, Benetti E M, Zenobi-Wong M. Molecularly engineered biolubricants for articular cartilage. Adv Healthcare Mater 7(16): 1701463 (2018)

[6]

Lin W F, Klein J. Recent progress in cartilage lubrication. Adv Mater 33(18): 2005513 (2021)

[7]

Adibnia V, Mirbagheri M, Faivre J, Robert J, Lee J, Matyjaszewski K, Lee D W, Banquy X. Bioinspired polymers for lubrication and wear resistance. Prog Polym Sci 110: 101298 (2020)

[8]

Coles J M, Chang D P, Zauscher S. Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. Curr Opin Colloid Interface Sci 15(6): 406–416 (2010)

[9]

Bonnevie E D, Galesso D, Secchieri C, Cohen I, Bonassar L J. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS One 10(11): e0143415 (2015)

[10]

Webner D, Huang Y L, Hummer C D 3rd. Intraarticular hyaluronic acid preparations for knee osteoarthritis: Are some better than others? Cartilage 13(1_suppl): 1619S–1636S (2021)

[11]

Bonnevie E D, Galesso D, Secchieri C, Bonassar L J. Frictional characterization of injectable hyaluronic acids is more predictive of clinical outcomes than traditional rheological or viscoelastic characterization. PLoS One 14(5): e0216702 (2019)

[12]

More S, Kotiya A, Kotia A, Ghosh S K, Spyrou L A, Sarris I E. Rheological properties of synovial fluid due to viscosupplements: A review for osteoarthritis remedy. Comput Meth Programs Biomed 196: 105644 (2020)

[13]

Zheng Y W, Yan Y F, Zhao W W, Wang H M, Sun Y L, Han J M, Zhang H Y. Self-assembled nanospheres with enhanced interfacial lubrication for the treatment of osteoarthritis. ACS Appl Mater Interfaces 14(19): 21773–21786 (2022)

[14]

Yu P, Li Y Y, Sun H, Ke X, Xing J Q, Zhao Y R, Xu X Y, Qin M, Xie J, Li J S. Cartilage-inspired hydrogel with mechanical adaptability, controllable lubrication, and inflammation regulation abilities. ACS Appl Mater Interfaces 14(23): 27360–27370 (2022)

[15]

Wu W, Liu J X, Gong P W, Li Z H, Ke C, Qian Y, Luo H W, Xiao L S, Zhou F, Liu W M. Construction of core-shell NanoMOFs@microgel for aqueous lubrication and thermal-responsive drug release. Small 18(28): 2202510 (2022)

[16]

Zhang M, Peng X, Ding Y, Ke X, Ren K, Xin Q W, Qin M, Xie J, Li J S. A cyclic brush zwitterionic polymer based pH-responsive nanocarrier-mediated dual drug delivery system with lubrication maintenance for osteoarthritis treatment. Mater Horiz 10(7): 2554–2567 (2023)

[17]

Sanchez-Lopez E, Coras R, Torres A, Lane N E, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 18(5): 258–275 (2022)

[18]

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J P, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7: 33–42 (2011)

[19]

Almezgagi M, Zhang Y, Hezam K, Shamsan E, Gamah M, Al-shaebi F, Abbas A B, Shoaib M, Saif B, Han Y, et al. Diacerein: Recent insight into pharmacological activities and molecular pathways. Biomed Pharmacother 131: 110594 (2020)

[20]

Zhang H L, Xiong H, Ahmed W, Yao Y J, Wang S Q, Fan C Y, Gao C Y. Reactive oxygen species-responsive and scavenging polyurethane nanoparticles for treatment of osteoarthritis in vivo. Chem Eng J 409: 128147 (2021)

[21]

Qiu W, Zhao W, Zhang L, Wang H, Li N, Chen K, Zhang H, Wang Y. A solid–liquid composite lubricating “nano-snowboard” for long-acting treatment of osteoarthritis. Adv Funct Mater 32(46): 2208189 (2022)

[22]

Martel-Pelletier J, Barr A J, Cicuttini F M, Conaghan P G, Cooper C, Goldring M B, Goldring S R, Jones G, Teichtahl A J, Pelletier J P. Osteoarthritis. Nat Rev Dis Primers 2: 16072 (2016)

[23]

Yang L, Sun L Y, Zhang H, Bian F K, Zhao Y J. Ice-inspired lubricated drug delivery particles from microfluidic electrospray for osteoarthritis treatment. ACS Nano 15(12): 20600–20606 (2021)

[24]

Seo B B, Kwon Y, Kim J, Hong K H, Kim S E, Song H R, Kim Y M, Song S C. Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis. Bioact Mater 7: 14–25 (2022)

[25]

Jin T, Wu D, Liu X M, Xu J T, Ma B J, Ji Y, Jin Y Y, Wu S Y, Wu T, Ma K. Intra-articular delivery of celastrol by hollow mesoporous silica nanoparticles for pH-sensitive anti-inflammatory therapy against knee osteoarthritis. J Nanobiotechnol 18(1): 94 (2020)

[26]

Goldring S R, Goldring M B. Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage–bone crosstalk. Nat Rev Rheumatol 12: 632–644 (2016)

[27]

Zheng Y W, Yang J L, Liang J, Xu X Y, Cui W G, Deng L F, Zhang H Y. Bioinspired hyaluronic acid/phosphorylcholine polymer with enhanced lubrication and anti-inflammation. Biomacromolecules 20(11): 4135–4142 (2019)

[28]

Zhao W W, Yu Y K, Zhang Z Y, He D M, Zhang H Y. Bioinspired nanospheres as anti-inflammation and antisenescence interfacial biolubricant for treating temporomandibular joint osteoarthritis. ACS Appl Mater Interfaces 14(31): 35409–35422 (2022)

[29]

Gaisinskaya-Kipnis A, Jahn S, Goldberg R, Klein J. Effect of glucosamine sulfate on surface interactions and lubrication by hydrogenated soy phosphatidylcholine (HSPC) liposomes. Biomacromolecules 15(11): 4178–4186 (2014)

[30]

Hochberg M C, Martel-Pelletier J, Monfort J, Möller I, Castillo J R, Arden N, Berenbaum F, Blanco F J, Conaghan P G, Doménech G, et al. Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: A multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Ann Rheum Dis 75(1): 37–44 (2016)

[31]

Maudens P, Jordan O, Allémann E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov Today 23(10): 1761–1775 (2018)

[32]

Gong J P. Friction and lubrication of hydrogels—Its richness and complexity. Soft Matter 2(7): 544–552 (2006)

[33]

Klein J. Molecular mechanisms of synovial joint lubrication. Proc Inst Mech Eng Part J J Eng Tribol 220(8): 691–710 (2006)

[34]

Daniel M. Boundary cartilage lubrication: Review of current concepts. Wien Med Wochenschr 164(5): 88–94 (2014)

[35]

Li C X, Cao Z W, Li W, Liu R, Chen Y W, Song Y R, Liu G Z, Song Z Q, Liu Z L, Lu C, et al. A review on the wide range applications of hyaluronic acid as a promising rejuvenating biomacromolecule in the treatments of bone related diseases. Int J Biol Macromol 165: 1264–1275 (2020)

[36]

Das S, Banquy X, Zappone B, Greene G W, Jay G D, Israelachvili J N. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication. Biomacromolecules 14(5): 1669–1677 (2013)

[37]

Samaroo K J, Tan M, Andresen Eguiluz R C, Gourdon D, Putnam D, Bonassar L J. Tunable lubricin-mimetics for boundary lubrication of cartilage. Biotribology 9: 18–23 (2017)

[38]

Jay G D, Waller K A. The biology of Lubricin: Near frictionless joint motion. Matrix Biol 39: 17–24 (2014)

[39]

Yang L M, Zhao X D, Ma Z F, Ma S H, Zhou F. An overview of functional biolubricants. Friction 11(1): 23–47 (2023)

[40]

Huang J, Qiu X Y, Xie L, Jay G D, Schmidt T A, Zeng H B. Probing the molecular interactions and lubrication mechanisms of purified full-length recombinant human proteoglycan 4 (rhPRG4) and hyaluronic acid (HA). Biomacromolecules 20(2): 1056–1067 (2019)

[41]

Kosinska M K, Liebisch G, Lochnit G, Wilhelm J, Klein H, Kaesser U, Lasczkowski G, Rickert M, Schmitz G, Steinmeyer J. A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum 65(9): 2323–2333 (2013)

[42]

Wang Z N, Li J J, Ge X Y, Liu Y H, Luo J B, Chetwynd D G, Mao K. Investigation of the lubrication properties and synergistic interaction of biocompatible liposome-polymer complexes applicable to artificial joints. Colloids Surf B Biointerfaces 178: 469–478 (2019)

[43]

Lee D W, Banquy X, Das S, Cadirov N, Jay G, Israelachvili J. Effects of molecular weight of grafted hyaluronic acid on wear initiation. Acta Biomater. 10(5): 1817–1823 (2014)

[44]

Yuan H, Mears L L E, Wang Y F, Su R X, Qi W, He Z M, Valtiner M. Lubricants for osteoarthritis treatment: From natural to bioinspired and alternative strategies. Adv Colloid Interface Sci 311: 102814 (2023)

[45]

Seror J, Zhu L, Goldberg R, Day A J, Klein J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 6(1): 6497 (2015)

[46]

Briscoe W H. Aqueous boundary lubrication: Molecular mechanisms, design strategy, and terra incognita. Curr Opin Colloid Interface Sci 27: 1–8 (2017)

[47]

Lin W F, Liu Z, Kampf N, Klein J. The role of hyaluronic acid in cartilage boundary lubrication. Cells 9(7): 1606 (2020)

[48]

Radin E L, Paul I L, Pollock D. Animal joint behaviour under excessive loading. Nature 226(5245): 554–555 (1970)

[49]

Janssen M, Timur U T, Woike N, Welting T J M, Draaisma G, Gijbels M, van Rhijn L W, Mihov G, Thies J, Emans P J. Celecoxib-loaded PEA microspheres as an auto regulatory drug-delivery system after intra-articular injection. J Control Release 244: 30–40 (2016)

[50]

Andablo-Reyes E, Yerani D, Fu M, Liamas E, Connell S, Torres O, Sarkar A. Microgels as viscosity modifiers influence lubrication performance of continuum. Soft Matter 15(47): 9614–9624 (2019)

[51]

Yao Y B, Wei G, Deng L F, Cui W G. Visualizable and lubricating hydrogel microspheres via NanoPOSS for cartilage regeneration. Adv Sci 10(15): 2207438 (2023)

[52]

Liu G Q, Liu Z L, Li N, Wang X L, Zhou F, Liu W M. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl Mater Interfaces 6(22): 20452–20463 (2014)

[53]

Han Z Y, Bai L, Zhou J, Qian Y H, Tang Y K, Han Q B, Zhang X Y, Zhang M Z, Yang X, Cui W G, et al. Nanofat functionalized injectable super-lubricating microfluidic microspheres for treatment of osteoarthritis. Biomaterials 285: 121545 (2022)

[54]

Han Y, Yang J L, Zhao W W, Wang H M, Sun Y L, Chen Y J, Luo J, Deng L F, Xu X Y, Cui W G, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact Mater 6(10): 3596–3607 (2021)

[55]

Yang J L, Han Y, Lin J W, Zhu Y, Wang F, Deng L F, Zhang H Y, Xu X Y, Cui W G. Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small 16(44): 2004519 (2020)

[56]

Lei Y T, Wang Y P, Shen J L, Cai Z W, Zhao, C, Chen H, Luo X J, Hu N, Cui W G, Huang W. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Science Advances 8(5): eabl6449 (2022)

[57]

Ma L, Liu Y B, Zhao X, Li P, Jin Q H. Rapamycin attenuates articular cartilage degeneration by inhibiting β-catenin in a murine model of osteoarthritis. Connect Tissue Res 60(5): 452–462 (2019)

[58]

Zhang H, Wu S L, Chen W K, Hu Y, Geng Z, Su J C. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater 23: 156–169 (2023)

[59]

Liu H, Zhao X D, Zhang Y L, Ma S H, Ma Z F, Pei X W, Cai M R, Zhou F. Cartilage mimics adaptive lubrication. ACS Appl Mater Interfaces 12(45): 51114–51121 (2020)

[60]

Chen M L, Yu P, Xing J Q, Wang Y T, Ren K, Zhou G W, Luo J, Xie J, Li J S. Gellan gum modified hyaluronic acid hydrogels as viscosupplements with lubrication maintenance and enzymatic resistance. J Mater Chem B 10(23): 4479–4490 (2022)

[61]

Liu W, Ma M, Lei Z, Xiong Z, Tao T, Lei P, Hu Y, Jiang X, Xiao J. Intra-articular injectable hydroxypropyl chitin/hyaluronic acid hydrogel as bio-lubricant to attenuate osteoarthritis progression. Materials & Design 217: 110579 (2022)

[62]

Cai Z X, Zhang H B, Wei Y, Wu M, Fu A L. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomater Sci 7(8): 3143–3157 (2019)

[63]

Zhang K, Yang J L, Sun Y L, Wang Y, Liang J, Luo J, Cui W G, Deng L F, Xu X Y, Wang B, et al. Gelatin-based composite hydrogels with biomimetic lubrication and sustained drug release. Friction 10(2): 232–246 (2022)

[64]

Lei Y T, Wang X K, Liao J Y, Shen J L, Li Y L, Cai Z W, Hu N, Luo X J, Cui W G, Huang W. Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis. Bioact Mater 16: 472–484 (2022)

[65]

Huang S T, Wang B B, Zhao X Y, Li S J, Liang X C, Zeng R, Li W, Wang X J. Phospholipid reinforced P(AAm-co-AAc)/Fe3+ hydrogel with ultrahigh strength and superior tribological performance. Tribol Int 168: 107436 (2022)

[66]

Lin W, Kluzek M, Iuster N, Shimoni E, Kampf N, Goldberg R, Klein J. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science 370(6514): 335-338 (2020)

[67]

Subongkot T. Combined effect of sonophoresis and a microemulsion on the dermal delivery of celecoxib. Drug Deliv 27(1): 1087–1093 (2020)

[68]

Wang M, Deng Z X, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater Today Bio 17: 100495 (2022)

[69]

Hua J C, Ng P F, Fei B. High-strength hydrogels: Microstructure design, characterization and applications. J Polym Sci B Polym Phys 56(19): 1325–1335 (2018)

[70]

Li X, Dai B Y, Guo J X, Zheng L Z, Guo Q Y, Peng J, Xu J K, Qin L. Nanoparticle–cartilage interaction: Pathology-based intra-articular drug delivery for osteoarthritis therapy. Nano Micro Lett 13(1): 149 (2021)

[71]

Xu N, Zhang M, Li W M, Zhao G Q, Wang X B, Liu W M. Study on the selectivity of calcium carbonate nanoparticles under the boundary lubrication condition. Wear 307(1–2): 35–43 (2013)

[72]

Xie C, Sun Q L, Dong Y, Lu H W, Li W H, Lin Z W, Li K, Cheng J H, Liu Z P, Qi J, et al. Calcitriol-loaded multifunctional nanospheres with superlubricity for advanced osteoarthritis treatment. ACS Nano 17(13): 12842–12861 (2023)

[73]

Wei Q B, Fu T, Lei L L, Liu H, Zhang Y X, Ma S H, Zhou F. Dopamine-triggered one-step functionalization of hollow silica nanospheres for simultaneous lubrication and drug release. Friction 11(3): 410–424 (2023)

[74]

Tan X L, Sun Y L, Sun T, Zhang H Y. Mechanised lubricating silica nanoparticles for on-command cargo release on simulated surfaces of joint cavities. Chem Commun 55(18): 2593–2596 (2019)

[75]

Zhao W W, Wang H, Wang H M, Han Y, Zheng Z B, Liu X D, Feng B, Zhang H Y. Light-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug delivery and lubrication enhancement for the treatment of osteoarthritis. Nanoscale 13(13): 6394–6399 (2021)

[76]

Sun T, Sun Y L, Zhang H Y. Phospholipid-coated mesoporous silica nanoparticles acting as lubricating drug nanocarriers. Polymers 10(5): 513 (2018)

[77]

Chen H, Sun T, Yan Y F, Ji X L, Sun Y L, Zhao X, Qi J, Cui W G, Deng L F, Zhang H Y. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials 242: 119931 (2020)

[78]

Yang L M, Zhao X D, Zhang J, Ma S H, Jiang L, Wei Q B, Cai M R, Zhou F. Synthesis of charged chitosan nanoparticles as functional biolubricant. Colloids Surf B Biointerfaces 206: 111973 (2021)

[79]

Ji X L, Yan Y F, Sun T, Zhang Q, Wang Y X, Zhang M, Zhang H Y, Zhao X. Glucosamine sulphate-loaded distearoyl phosphocholine liposomes for osteoarthritis treatment: Combination of sustained drug release and improved lubrication. Biomater Sci 7(7): 2716–2728 (2019)

[80]

Vasiliadis H S, Tsikopoulos K. Glucosamine and chondroitin for the treatment of osteoarthritis. World J Orthop 8(1): 1 (2017)

Friction
Pages 2167-2187
Cite this article:
WU J, REN K, YIN J. Boundary-lubricated biomaterials with drug delivery for osteoarthritis treatment. Friction, 2024, 12(10): 2167-2187. https://doi.org/10.1007/s40544-024-0874-7

101

Views

13

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 September 2023
Revised: 05 December 2023
Accepted: 17 January 2024
Published: 23 May 2024
© The author(s) 2024.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return