AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Analysis of chromatin fibers in Hela cells with electron tomography

Xiaomin Li1,3,Hongli Feng1,Jianguo Zhang2Lei Sun2Ping Zhu1( )
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China

Xiaomin Li and Hongli Feng have contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The presence and folding pattern of chromatin in eukaryotic cells remain elusive and controversial. In this study, we prepared ultra-thin sections of Hela cells with three different fixation and sectioning methods, i.e., chemical fixation, high pressure freezing with freeze substitution, and cryo-ultramicrotomy with SEM-FIB (focused ion beam), and analyzed in vivo architecture of chromatin fibers in Hela nuclei with electron tomography technology. The results suggest that the chromatin fibers in eukaryotic Hela cells are likely organized in an architecture with a diameter of about 30 nm.

References

 

Athey BD, Smith MF, Rankert DA, William SP, Langmore JP, (1990) The diameters of frozen-hydrated chromatin fibers increase with DNA linker length: evidence in support of variable diameter models for chromatin.J Cell Biol 111:795-806

 

Bednar J, Horowitz RA, Dubochet J, Woodcock CL, (1995) Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy.J Cell Biol 131:1365-1376

 

Daban JR, (2011) Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.Micron 42:733-750

 

Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ, (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution.J Mol Biol 319:1097-1113

 

Davies HG, Murray AB, Walmsley ME, (1974) Electron-microscope observations on the organization of the nucleus in chicken erythrocytes and a superunit thread hypothesis for chromosome structure.J Cell Sci 16:261-299

 

Derenzini M, Olins AL, Olins DE, (2014) Chromatin structure in situ: the contribution of DNA ultrastructural cytochemistry.Eur J Histochem 58:2307

 

Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J, (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ.Proc Natl Acad Sci USA 105:19732-19737

 

Eltsov M, Sosnovski S, Olins AL, Olins DE, (2014) ELCS in ice: cryo-electron microscopy of nuclear envelope-limited chromatin sheets.Chromosoma 123:303-312

 

Everid AC, Small JV, Davies HG, (1970) Electron-microscope observation on the structure of condensed chromatin: evidence for orderly arrays of unit threads on the surface of chicken erythrocyte nuclei.J Cell Sci 7:35-48

 

Fakan S, van Driel R, (2007) The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding.Semin Cell Dev Biol 18:676-681

 

Finch JT, Klug A, (1976) Solenoidal model for superstructure in chromatin.Proc Natl Acad Sci USA 73:1897-1901

 

Fussner E, Ching RW, Bazett-Jones DP, (2011) Living without 30 nm chromatin fibers.Trends Biochem Sci 36:1-6

 

Gerchman SE, Ramakrishnan V, (1987) Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy.Proc Natl Acad Sci USA 84:7802-7806

 

Giannasca PJ, Horowitz RA, Woodcock CL, (1993) Transitions between in situ and isolated chromatin.J Cell Sci 105:551-561

 

Grigoryev SA, Woodcock CL, (2012) Chromatin organization: the 30 nm fiber.Exp Cell Res 318:1448-1455

 

Horn PJ, Peterson CL, (2002) Chromatin higher order folding–wrapping up transcription.Science 297:1824-1827

 

Horowitz RA, Agard DA, Sedat JW, Woodcock CL, (1994) The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon.J Cell Biol 125:1-10

 

Huynh VA, Robinson PJ, Rhodes D, (2005) A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone.J Mol Biol 345:957-968

 

Konig P, Braunfeld MB, Sedat JW, Agard DA, (2007) The three-dimensional structure of in vitro reconstitutedXenopus laevis chromosomes by EM tomography.Chromosoma 116:349-372

 

Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J, (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber.Nat Struct Mol Biol 16:534-540

 

Langmore JP, Paulson JR, (1983) Low angle X-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes.J Cell Biol 96:1120-1131

 

Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ, (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution.Nature 389:251-260

 

Matsuda A, Shao L, Boulanger J, Kervrann C, Carlton PM, Kner P, Agard D, Sedat JW, (2010) Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-histones.PLoS One 5:e12768

 

McDowall AW, Smith JM, Dubochet J, (1986) Cryo-electron microscopy of vitrified chromosomes in situ.EMBO J 5:1395-1402

 

Rigort A, Bauerlein FJ, Leis A, Gruska M, Hoffmann C, Laugks T, Bohm U, Eibauer M, Gnaegi H, Baumeister W, Plitzko JM, (2010) Micromachining tools and correlative approaches for cellular cryo-electron tomography.J Struct Biol 172:169-179

 

Robinson PJ, Rhodes D, (2006) Structure of the “30 nm” chromatin fibre: a key role for the linker histone.Curr Opin Struct Biol 16:336-343

 

Robinson PJ, Fairall L, Huynh VA, Rhodes D, (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure.Proc Natl Acad Sci USA 103:6506-6511

 

Rogort A, Bauerlein FJB, Villa E, Eibauer M, Laugks T, Baumeister W, Plitzko JM, (2012) Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography.Proc Natl Acad Sci USA 109:4449-4454

 

Schalch T, Duda S, Sargent DF, Richmond TJ, (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre.Nature 436:138-141

 

Scheffer MP, Eltsov M, Frangakis AS, (2011) Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei.Proc Natl Acad Sci USA 108:16992-16997

 

Simpson RT, Stafford DW, (1983) Structural features of a phased nucleosome core particle.Proc Natl Acad Sci USA 80:51-55

 

Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G, (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.Science 344:376-380

 

Widom J, Finch JT, Thomas JO, (1985) Higher-order structure of long repeat chromatin.EMBO J 4:3189-3194

 

William SP, Langmore JP, (1991) Small angle X-ray scattering of chromatin. Radius and mass per unit length depend on linker length.Biophys J 59:606-618

 

William SP, Athey BD, Lj M, Schappe RS, Gough AH, Langmore JP, (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length.Biophys J 49:233-248

 

Woodcock CL, (1994) Chromatin fibers observed in situ in frozen hydrated sections. native fiber diameter is not correlated with nucleosome repeat length.J Cell Biol 125:11-19

 

Woodcock CL, Frado L-LY, Rattner JB, (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement.J Cell Biol 99:42-52

Biophysics Reports
Pages 51-60
Cite this article:
Li X, Feng H, Zhang J, et al. Analysis of chromatin fibers in Hela cells with electron tomography. Biophysics Reports, 2015, 1(1): 51-60. https://doi.org/10.1007/s41048-015-0009-9

278

Views

8

Downloads

10

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 09 March 2015
Accepted: 12 April 2015
Published: 07 August 2015
© The Author(s) 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return